Please wait a minute...
金属学报  2016, Vol. 52 Issue (11): 1484-1490    DOI: 10.11900/0412.1961.2016.00047
  本期目录 | 过刊浏览 |
连铸中间包全尺度物理模拟平台建立及应用研究*
黄军1,2,张永杰3(),王宝峰2,张亚坤2,叶鑫2,周士凯2,4
1 东北大学冶金学院, 沈阳 110819
2 内蒙古科技大学能源与环境学院, 包头 014010
3 上海宝钢研究院, 上海 201900
4 中国重型机械研究院股份公司, 西安 710032
ESTABLISHMENT OF A FULL SCALE TUNDISH PHYSICAL SIMULATION PLATFORM AND APPLICATION RESEARCH
Jun HUANG1,2,Yongjie ZHANG3(),Baofeng WANG2,Yakun ZHANG2,Xin YE2,Shikai ZHOU2,4
1 School of Metallurgy, Northeastern University, Shenyang 110819, China
2 School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou 014010, China
3 Baosteel Research Institute, Shanghai 201900, China
4 China National Heavy Machinery Research Institute Co., Ltd., Xi'an 710032, China
引用本文:

黄军,张永杰,王宝峰,张亚坤,叶鑫,周士凯. 连铸中间包全尺度物理模拟平台建立及应用研究*[J]. 金属学报, 2016, 52(11): 1484-1490.
Jun HUANG, Yongjie ZHANG, Baofeng WANG, Yakun ZHANG, Xin YE, Shikai ZHOU. ESTABLISHMENT OF A FULL SCALE TUNDISH PHYSICAL SIMULATION PLATFORM AND APPLICATION RESEARCH[J]. Acta Metall Sin, 2016, 52(11): 1484-1490.

全文: PDF(1347 KB)   HTML
摘要: 

基于同时满足连铸水模拟实验中Re准数和Fr准数相似要求, 建立了一套可全尺度模拟连铸过程流动的实验平台. 利用该平台的NI图像处理与PIV粒子测速技术, 对特厚板连铸用中间包内速度场、涡量场、RTD等流动特征进行研究. 结果表明, 中间包内流动呈现湍流漩涡状, 在注流区形成一个类似“漏斗”状的涡结构, 由于中间包内通道的存在, 在浇注区形成2个大的环流, 并对侧墙有明显冲击, 非接触测量获取的RTD与数值模拟结果吻合, 长的停留时间和大的死区体积表明该中间包补热的必要性.

关键词 中间包,全尺度,测速,涡量,停留时间(RTD)    
Abstract

The importance of proper melt flow in continuous casting tundish for production of clean steel was well recognized, more in-depth research melt flow by physical models can promote tundish metallurgy effect and improve the quality of liquid steel. Based on the requirements of Re number and Fr number similar on the same time in the continuous casting water simulation, a synthetical hydraulic simulation platform of continuous casting was established. Flow characteristics with velocity field, vorticity field, RTD in extra thick slab tundish were got by the platform using NI image processing and PIV. The results showed that flow in the tundish had larger turbulent eddies, which formed a similar "funnel" vortex structure in inlet section of the tundish. Flow brought two big circulations in the exit section because of the channel and had a great impact on the side walls. RTD with noncontact measurement was coincident with the results of numerical simulation, longer residence time and larger dead volume showed the necessity of heating for the tundish.

Key wordstundish,    full    scale,    velocity    measurement,    vorticity,    residence    time    distribution    (RTD)
收稿日期: 2016-01-28     
基金资助:* 中国重型机械研究院股份公司资助项目
图1  连铸综合水力学实验平台示意图和现场图
图2  中间包结构示意图
图3  速度测量位置示意图
图4  连铸拉速0.15 m/min时注流区A截面的流场涡量图和速度图
图5  拉速为0.15和0.20 m/min时浇注区B和C截面速度图
图6  拉速0.15 m/min下数值模拟的中间包内三维流线图
图7  拉速0.15 m/min时中间包的RTD曲线
[1] Wang J J, Bao Y P, Q Y. Tundish Metallurgy. Beijing: Metallurgy Industry Press, 2001: 18
[1] (王建军, 包燕平, 曲英. 中间包冶金学. 北京: 冶金工业出版社, 2001: 18)
[2] Mazumdar D.Trans Indian Inst Met, 2013; 66: 597
[3] Jha P K, Rao P S, Dewan A.ISIJ Int, 2008; 48: 154
[4] Zhang L F, Zhi J J, Mou J N, Cui J.J Iron Steel Res Int, 2005; 12: 20
[5] Zhong L C, Hao R C, Li J Z, Zhu Y X.J Iron Steel Res Int, 2014; 21: 10
[6] Braun A, Warzecha M, Pfeifer H.Metall Mater Trans, 2010; 41B: 549
[7] Sahai Y.J Iron Steel Res Int, 2008; 15: 643
[8] Solorio-Diaz G, Ramos-Banderas A, Barreto J D, Morales R D.Steel Res Int, 2007; 78: 248
[9] Alkishriwi N, Meinke M, Schroder W, Braun A, Pfeifer H. Steel Res Int, 2006; 77: 565
[10] Sahai Y, Emi T.Tundish Technology for Clean Steel Production. Hackensack, NJ: World Scientific, 2008: 129
[11] Chattopadhyay K, Isac M, Guthrie R I L.Ironmak Steelmak, 2011; 38: 398
[12] Kumar A, Koria S C, Mazumdar D.ISIJ Int, 2007; 47: 1618
[13] Chen D F, Xie X, Long M J, Zhang M, Zhang L L, Liao Q.Metall Mater Trans, 2014; 45B: 392
[14] Koitzsch R, Odenthal H J, Pfeifer H.Steel Res Int, 2007; 78: 473
[15] Merder T, Saternus M, Warzecha M, Warzecha P.Metallurgija, 2014; 53: 323
[16] Merder T, Pieprzyca J, Saternus M.Metallurgija, 2014; 53: 155
[17] Warzecha M, Merder T, Pfeifer H, Pieprzyca J. Steel Res Int, 2010; 81: 987
[18] Cwudzinski A.Metall Res Technol, 2014; 111: 45
[19] Damle C, Sahai Y.ISIJ Int, 1995; 35: 163
[20] Ding N, Bao Y P, Sun Q S, Wang L F.Int J Min Met Mater, 2011; 18: 292
[21] Mishra S K, Jha P K, Sharma S C, Ajmani S K.Int J Min Met Mater, 2011; 18: 535
[22] Odenthal H J, Bolling R, Pfeifer H.Steel Res Int, 2003; 74: 44
[23] Singh V, Ajmani S K, Pal A R, Singh S K, Denys M B.Ironmak Steelmak, 2012; 39: 171
[24] Cwudzinski A, Jowsa J.Acta Metall Mater, 2008; 53: 749
[25] Merder T.Metallurgija, 2013; 52: 161
[26] Wang Q, Li B K, Tsukihashi F. ISIJ Int, 2014; 54: 311
[27] Cwudzinski A.Can Metall Quart, 2010; 49: 63
[28] Warzecha M, Merder T.Metallurgija, 2013; 52: 153
[1] 唐海燕, 刘锦文, 王凯民, 肖红, 李爱武, 张家泉. 连铸中间包加热技术及其冶金功能研究进展[J]. 金属学报, 2021, 57(10): 1229-1245.
[2] 郑锦灿, 刘润聪, 王晓东. 热镀锌工艺中锌液表面流速的在线电磁测量[J]. 金属学报, 2020, 56(7): 929-936.
[3] 唐海燕, 李小松, 张硕, 张家泉. 基于恒过热控制的感应加热中间包内钢水的流动与传热[J]. 金属学报, 2020, 56(12): 1629-1642.
[4] 陈树君. 基于中间过渡层的 5A06/0Cr18Ni10Ti 气化冲击焊接工艺研究[J]. 金属学报, 2019, 55(8): 1041-1048.
[5] 雷洪 赵岩 鲍家琳 刘承军 陈海耿 赫冀成. 多流连铸中间包停留时间分布曲线总体分析方法[J]. 金属学报, 2010, 46(9): 1109-1114.
[6] 王赟; 钟云波; 任忠鸣; 王保军; 雷作胜; 张小伟 . 离心中间包内钢液流动的数值模拟[J]. 金属学报, 2008, 44(10): 1203-1208 .
[7] 张胜军; 朱苗勇 . 连铸中间包内夹杂物去除机理的水模型研究[J]. 金属学报, 2007, 43(9): 1004-1008 .
[8] 李宝宽; 齐凤升; 王芳; 刘杰 . 利用弯水口增加离心式中间包钢液旋流强度的研究[J]. 金属学报, 2007, 43(3): 303-306 .
[9] 郑淑国; 朱苗勇 . 多流连铸中间包内钢液流动特性的分析模型[J]. 金属学报, 2005, 41(10): 1073-1076 .
[10] 张邦文; 邓; 康; 雷作胜; 任忠鸣 . 连铸中间包中夹杂物聚合与去除的数学模型[J]. 金属学报, 2004, 40(6): 623-.
[11] 樊俊飞; 卢金雄; 刘俊江; 张卫东 . 六流连铸中间包等离子加热过程的数值模拟[J]. 金属学报, 2001, 37(4): 429-433 .
[12] 李东辉; 李宝宽 . 中间包底部吹气过程去除夹杂物效果的模拟研究[J]. 金属学报, 2000, 36(4): 411-416 .
[13] 樊俊飞; 朱苗勇; 张清朗; 王文忠 . 六流连铸中间包内流动与传热耦合过程的数值模拟及控流装置优化[J]. 金属学报, 1999, 35(11): 1191-1194 .
[14] 李东辉; 李宝宽; 赫冀成 . 中间包双板多孔挡墙流行控制去除夹杂物效果的模拟研究[J]. 金属学报, 1999, 35(10): 1107-1111 .
[15] 朱苗勇. 连铸中间包内钢液流动与传热耦合过程的计算机模拟[J]. 金属学报, 1997, 33(9): 933-938.