Please wait a minute...
金属学报  2016, Vol. 52 Issue (8): 1000-1008    DOI: 10.11900/0412.1961.2015.00643
  论文 本期目录 | 过刊浏览 |
形状记忆合金Au30Cu25Zn45中热弹性马氏体相变的相场模拟*
宋鹏程1,柳文波2,陈磊3,张弛1,杨志刚1()
1 清华大学材料学院先进材料教育部重点实验室, 北京 100084。
2 西安交通大学核科学与技术学院, 西安 710049。
3 Department of Mechanical Engineering, Mississippi State University, MS 39762, USA
PHASE-FIELD MODELLING OF THE MARTENSITIC TRANSFORMATION IN SHAPE MEMORYALLOY Au30Cu25Zn45
Pengcheng SONG1,Wenbo LIU2,Lei CHEN3,Chi ZHANG1,Zhigang YANG1()
1 Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
2 School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
3 Department of Mechanical Engineering, Mississippi State University, MS 39762, USA
引用本文:

宋鹏程,柳文波,陈磊,张弛,杨志刚. 形状记忆合金Au30Cu25Zn45中热弹性马氏体相变的相场模拟*[J]. 金属学报, 2016, 52(8): 1000-1008.
Pengcheng SONG, Wenbo LIU, Lei CHEN, Chi ZHANG, Zhigang YANG. PHASE-FIELD MODELLING OF THE MARTENSITIC TRANSFORMATION IN SHAPE MEMORYALLOY Au30Cu25Zn45[J]. Acta Metall Sin, 2016, 52(8): 1000-1008.

全文: PDF(949 KB)   HTML
  
摘要: 

使用相场模拟方法研究了形状记忆合金Au30Cu25Zn45马氏体相变过程中的组织演变, 并与实验结果进行比较. 模拟发现, Au30Cu25Zn45合金马氏体相变后形成的特殊的弯曲状组织, 是由相变形成的四变体结结构(quad-junction)中的变体对逐层叠加长大而成, 先后形成的变体层沿同一孪晶面生长, 并且先形成的变体层尺寸较大, 从而形成凸起的马氏体组织. 进一步研究得到, 马氏体变体中存在6组能够形成这种quad-junction的变体组合, 每一组合中有4个变体, 且两两之间形成4对不同的1类/2类孪生变体对与2对复合变体对, quad-junction由其中4种两两具有相同孪晶面法向的变体对组成, 且这2组孪晶面法向相互垂直.

关键词 相场模拟四变体结结构孪生变体对形状记忆合金马氏体相变    
Abstract

Applications of shape memory alloys require them have the ability to undergo back and forth through the solid-to-solid martensitic phase transformations for many times without degradation of properties (termed “reversibility”). Low hysteresis and small migration of transformation temperature under cycling are the macroscopic manifestation of high reversibility. By the crystallographic theory of martensite, materials with certain crystalline symmetry and geometric compatibility tend to form no-stressed transformation interface and have exce-llent functional stability. In the theory, several conditions that corresponding to extremely low hysteresis are specified. Stronger compatibility conditions which lead to even better reversibility have been theoretically proposed, those conditions are called “cofactor conditions”. Recently, for the first time, experimental results find out the shape memory alloy Au30Cu25Zn45 that closely satisfy the cofactor conditions. Enhanced reversibility with thermal hysteresis of 2.045 ℃, and the unusual riverine microstructure are found in Au30Cu25Zn45. However, their studies are limited to crystallographic analysis, and haven't provided enough details of microstructural evolution in martensitic transformation. Furthermore, it is the evolution of microstructures that leads to an extremely low thermal hysteresis in this alloy. Thus, making clear of evolution of microstructures in martensitic transformation in this alloy is of great importance. So, in the present work, the phase field method was applied, in which the microstructure is described by Landau theory of martensitic transformation, Khachaturyan-Shatalov's phase field microelasticity theory, and thermodynamics gradient to study the microstructural evolution of martensitic transformation in Au30Cu25Zn45, trying to figure out pathway of formation of the unusual microstructure with satisfying cofactor conditions. The simulation results show that during the martensitic transformation, quad-junctions composed of four different variants are formed. These junctions grow layer by layer, and the previously formed layer has larger size, thus leading to the formation of the experimentally reported “riverine” microstructure of martensite in Au30Cu25Zn45. Further analysis based on the crystallographic theory of martensitic transformation shows that in Au30Cu25Zn45 6 groups of variants can form such kind of quad-junction, and each group of variants can form 4 kinds of type 1/type 2 twin pairs and two kinds of compound twin pairs. All of the quad-junctions in this transformation are composed of four of those 6 twin pairs in each variant group, and the twin walls of these four twin pairs are perpendicular to each other.

Key wordsphase-field model    quad-junction    twin variants pair    shape-memory alloy    martensitic transformation
收稿日期: 2015-12-15     
基金资助:* 国家自然科学基金项目51471094, 国家重点基础研究发展计划项目2015GB118000和2015CB654802 资助
Variant Stretch tensor Variant Stretch tensor Variant Stretch tensor
U1 [1.05910.007300.00731.00150000.9363 U5 0.93630001.00150.007300.00731.0591 U9 1.001500.007300.936300.007301.0591
U2 1.0591-0.00730-0.00731.00150000.9363 U6 0.93630001.0015-0.00730-0.00731.0591 U10 1.00150-0.007300.93630-0.007301.0591
U3 1.00150.007300.00731.05910000.9363 U7 1.059100.007300.936300.007301.0015 U11 0.93630001.05910.007300.00731.0015
U4 1.0015-0.00730-0.00731.05910000.9363 U8 1.05910-0.007300.93630-0.007301.0015 U12 0.93630001.0591-0.00730-0.00731.0015
表1  Au30Cu25Zn45合金中马氏体变体对应的相变拉伸矩阵
Variant 2 3 4 5 6 7 8 9 10 11 12
1 C C N I / II I / II I / II I / II NM NM NM NM
2 N C I / II I / II I / II I / II NM NM NM NM
3 C NM NM NM NM I / II I / II I / II I / II
4 NM NM NM NM I / II I / II I / II I / II
5 C NM NM I / II I / II C C (N)
6 NM NM I / II I / II C (N) C
7 C C C (N) I / II I / II
8 C (N) C I / II I / II
9 C NM NM
10 NM NM
11 C
表2  Au30Cu25Zn45合金中马氏体变体对分类
图1  相场模拟中形状记忆合金Au30Cu25Zn45马氏体相变的组织演化
图2  形状记忆合金Au30Cu25Zn45中马氏体相变的组织形貌演化的三维图像及局部放大像
图3  由变体1~4组成的quad-junction的生长过程组织演化
[1] Yintao S, Xian C, Vivekanand D, Thomas W S, James R D.Nature, 2013; 502: 85
[2] Walia H, Brantley W A, Gerstein H.J Endod, 1988; 14: 950
[3] Liu J, Gottschall T, Skokov K P, Moore J D, Gutfleisch M O.Nature Mater, 2012; 11: 620
[4] Moya X, Stern-Taulats E, Crossley S, González-Alonso D, Kar-Narayan S, Planes A, Ma?osa L D, Mathur N.Adv Mater, 2013; 25: 1360
[5] Srivastava V, Song Y, Bhatti K, James R D.Adv Energy Mater, 2011; 1: 97
[6] Kato H, Ozu T, Hashimoto S, Miura S.Mater Sci Eng, 1999; A264: 245
[7] Cui J, Chu Y S, Famodu O O, Furuya Y, Hattrick-Simpers J, James R D, Ludwig A, Thienhaus S, Wuttig M, Zhang Z Y, Takeuchi I.Nature Mater, 2006; 5: 286
[8] Zarnetta R, Takahashi R, Young M L, Savan A, Furuya Y, Thienhaus S, Maa? B, Rahim M, Frenzel J, Brunken H, Chu Y S, Srivastava V, James R D, Takeuchi I, Eggeler G, Ludwig A.Adv Funct Mater, 2010; 20: 1917
[9] Bechtold C, Chluba C, de Miranda R L, Quandt EAppl Phys Lett, 2012; 101: 091903
[10] Zhang Z, James R D, Muller S.Acta Mater, 2009; 57: 4332
[11] Delville R, Kasinathan S, Zhang Z Y, Humbeeck J V, James R D, Schryvers D.Phil Mag, 2010; 90: 177
[12] Srivastava V, Chen X, James R D.Appl Phys Lett, 2010; 97: 014101
[13] Ball J M, James R D.Arch Ration Mech Anal, 1987; 100: 13
[14] Chen X, Srivastava V, Dabade V, James R D.J Mech Phys Solids, 2013; 61: 2566
[15] Chluba C, Ge W W, Miranda R L, Strobel J, Kienle L, Quandt E, Wuttig M.Science, 2015; 348: 1004
[16] Militzer M.Current Opin Solid State Mater Sci, 2011; 15: 106
[17] Artemev A, Yi W, Khatchaturyan A G.Acta Mater, 2000; 48: 2503
[18] Artemev A, Jin Y, Khatchaturyan A G.Acta Mater, 2001; 49: 1165
[19] Artemev A, Jin Y, Khatchaturyan A G.Phil Mag, 2002; 82A: 1249
[20] Gao Y, Zhou N, Wang D, Wang Y.Acta Mater, 2014; 68: 93
[21] Tadaki T, Okazaki H, Yoshiyuki N, Shimizu K.Mater Trans JIM, 1990; 31: 935
[22] Tadaki T, Okazaki H, Yoshiyuki N, Shimizu K.Mater Trans JIM, 1990; 31: 941
[23] Salje E.Ferroelectrics, 1990; 104: 111
[24] Khachaturyan A G.Theory of Structural Transformations in Solids. New York: Wiley-Interscience, 1983: 157
[25] Cahn J W, Hilliard J E.J Chem Phys, 1958; 28: 258
[26] Hillert M.Acta Metall, 1961; 9: 525
[27] Bhattacharya K.Microstructure of Martensite. Cambridge: Oxford University Press, 2003: 66
[28] Lieberman D S, Wechsler M S, Read T A.J Appl Phys, 1955; 26: 473
[29] Bowles J S, Mackenzie J K.Acta Metall, 1954; 2: 129
[30] Bowles J S, Mackenzie J K.Acta Metall, 1954; 2: 138
[31] Chen L Q.Annu Rev Mater Res, 2002; 32: 113
[32] Ji Y Z, Issa A, Heo T W, Saal J E, Wolverton C, Chen L Q.Acta Mater, 2014; 76: 259
[33] Wang Y, Khachaturyan A G.Acta Mater, 1997; 45: 759
[34] Wang Y Z, Khachaturyan A G.Mater Sci Eng, 2006; A438: 55
[35] Olson G B.Mater Sci Eng, 1999; A273:11
[36] Chu Y A, Moran B, Reid A C E.Metall Mater Trans, 2000; 31A: 1321
[1] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[2] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[3] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[4] 戚晓勇, 柳文波, 何宗倍, 王一帆, 恽迪. UN核燃料烧结致密化过程的相场模拟[J]. 金属学报, 2023, 59(11): 1513-1522.
[5] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[6] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[7] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[8] 陈斐, 邱鹏程, 刘洋, 孙兵兵, 赵海生, 沈强. 原位激光定向能量沉积NiTi形状记忆合金的微观结构和力学性能[J]. 金属学报, 2023, 59(1): 180-190.
[9] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.
[10] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[11] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[12] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-NbTi原位复合材料的Lüders带型变形和载荷转移行为[J]. 金属学报, 2021, 57(7): 921-927.
[13] 叶俊杰, 贺志荣, 张坤刚, 杜雨青. 时效对Ti-50.8Ni-0.1Zr形状记忆合金显微组织、拉伸性能和记忆行为的影响[J]. 金属学报, 2021, 57(6): 717-724.
[14] 王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.
[15] 左良, 李宗宾, 闫海乐, 杨波, 赵骧. 多晶Ni-Mn-X相变合金的织构化与功能行为[J]. 金属学报, 2021, 57(11): 1396-1415.