Please wait a minute...
金属学报  2016, Vol. 52 Issue (7): 811-820    DOI: 10.11900/0412.1961.2016.00039
  论文 本期目录 | 过刊浏览 |
Bi添加对挤压纯Mg组织和力学性能的影响*
孟帅举1,余晖1,2(),张慧星3,崔红卫4,王志峰1,赵维民1
1 河北工业大学材料科学与工程学院, 天津 300130。
2 Light Metal Team, Korea Institute of Materials Science, Changwon 51508, Republic of Korea.
3 天津中德应用技术大学机械与材料学院, 天津 300350。
4 山东理工大学材料科学与工程学院, 淄博 255049。
MICROSTRUCTURE AND MECHANICAL PROPERTIESOF EXTRUDED PURE Mg WITH Bi ADDITION
Shuaiju MENG1,Hui YU1,2(),Huixing ZHANG3,Hongwei CUI4,Zhifeng WANG1,Weimin ZHAO1
1 School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China.
2 Light Metal Team, Korea Institute of Materials Science, Changwon 51508, Republic of Korea .
3 Mechanical and Material School, Tianjin Sino-German University of Applied Sciences, Tianjin 300350, China .
4 School of Materials Science and Engineering, Shandong University of Technology, Zibo 255049, China.
引用本文:

孟帅举,余晖,张慧星,崔红卫,王志峰,赵维民. Bi添加对挤压纯Mg组织和力学性能的影响*[J]. 金属学报, 2016, 52(7): 811-820.
Shuaiju MENG, Hui YU, Huixing ZHANG, Hongwei CUI, Zhifeng WANG, Weimin ZHAO. MICROSTRUCTURE AND MECHANICAL PROPERTIESOF EXTRUDED PURE Mg WITH Bi ADDITION[J]. Acta Metall Sin, 2016, 52(7): 811-820.

全文: PDF(1824 KB)   HTML
摘要: 

基于各种零部件对非稀土型低成本镁合金的需求, 选择低成本Bi添加镁合金作为研究对象, 对比研究了纯Mg及其添加6%Bi (质量分数)的Mg-6Bi合金的微观组织与力学性能. 结果表明, 2种样品在挤压后均发生了完全动态再结晶且表现出相似的挤压织构, 但Bi加入后可获得更为均匀细小的组织, 平均晶粒尺寸从未添加态的30 μm显著减小为4 μm. Mg-6Bi合金中未完全固溶的微米级Mg3Bi2相在挤压过程中被破碎并沿挤压方向呈条带状分布, 同时观察到大量动态析出的纳米级Mg3Bi2相弥散分布在基体中. 挤压态Mg-6Bi合金的力学性能较纯Mg显著提高, 其拉伸屈服强度、抗拉强度和延伸率分别达到189 MPa, 228 MPa和19.9%, 且未表现出拉压各向异性. 添加Bi后合金性能的提高主要归因于晶粒细化和弥散分布的微纳双尺寸Mg3Bi2相协同强化的共同作用.

关键词 镁合金挤压微观组织力学性能    
Abstract

Due to the increasing demand of low density and high strength Mg alloys for the automobile, railway, and aerospace industries, the exploration of cost-effective RE-free Mg alloys becomes more and more attractive. Instead of Mg-Sn based system, the Mg-Bi alloy system seems to satisfy this requirement as a potential candi date, since it shows typical precipitation-type phase equilibrium and contains thermal stable Mg3Bi2 phases, which exhibit a high melting temperature of 821 ℃ comparable to those in RE-bearing Mg alloy. In addition, the fine Mg3Bi2 plates on the prismatic plane were reported to be more effective than the more commonly observed basal plates for precipitation-hardening. In this work, pure Mg with/without 6% Bi (mass fraction) additions were extruded, and the corresponding microstructure and mechanical properties were investigated. The results show that dynamic recrystallization (DRX) occurs in both alloys after extrusion and these two kinds of specimens exhibit similar extrusion texture. However, the as-extruded Mg-6Bi alloy represents finer and homogenous microstructure, and the average grain size (AGS) decreases from 30 μm to 4 μm when 6% Bi added. In addition, the Mg-6Bi alloy contains strip-like fragmented Mg3Bi2 particles along the extrusion direction and fine Mg3Bi2 precipitates, and demonstrates superior mechanical properties with tensile yield strength of 189 MPa, ultimate tensile strength of 228 MPa, and an elongation of 19.9%. There is a large number of nano-scale Mg3Bi2 particles in the tensile fracture surface of Mg-6Bi alloy. And there is a large number of twins in the microstructure of compression fractured pure Mg sample; while for the Mg-6Bi alloy specimen, with a large number of second phase particles on the α-Mg matrix, little twins are observed. Moreover, the Mg-6Bi alloy also gives a low tension-compression yield asymmetry with yield asymmetric ratio of 1.01. These significantly improvement of mechanical properties are mainly attributed to the combined effects of grain refinement and large quantity of co-exist micro/nano-size Mg3Bi2 particles.

Key wordsMg alloy    extrusion    microstructure    mechanical property
收稿日期: 2016-01-26     
基金资助:* 河北省教育厅高等学校科学研究计划项目QN2015035, 河北省研究生创新项目220056, 河北工业大学优秀青年科技创新基金2015002, 河北省自然科学基金优秀青年科学基金E2016202130, 河北工业大学引进人才项目208002及科技部“中韩青年科学家”交流计划资助项目201510资助
Point Mass fraction / % Atomic fraction / %
Mg Bi Mg Bi
A 42.65 57.35 86.47 13.53
B 83.08 16.92 97.69 2.31
C 97.21 2.79 99.67 0.33
表1  图1c中各区域的EDS分析
图1  铸态纯Mg, Mg-6Bi合金的XRD谱和Mg-6Bi合金SEM像
图2  铸态和固溶处理后纯Mg和Mg-6Bi合金的OM像
图3  挤压态纯Mg和Mg-6Bi合金的微观组织
图4  挤压态Mg-6Bi合金的TEM明场像和Mg3Bi2相的EDS分析
图5  挤压态纯Mg和Mg-6Bi合金的EBSD像、晶粒尺寸分布和反极图
图6  挤压态纯Mg和Mg-6Bi合金沿挤压方向的室温拉伸和压缩应力-应变曲线
表2  挤压态纯Mg和Mg-6Bi合金的微观组织特征和力学性能
图7  挤压态纯Mg和Mg-6Bi合金的拉伸断口形貌
图8  挤压态纯Mg和Mg-6Bi合金的压缩试样断口附近微观组织OM像
[1] Ding W J, Zeng X Q.Acta Metall Sin, 2010; 46: 1450
[1] (丁文江, 曾小勤. 金属学报, 2010; 46: 1450)
[2] Zhu S, Easton M A, Abbott T B, Nie J F, Dargusch M S, Hort N, Gibson M A.Metall Mater Trans, 2015; 46A: 3543
[3] Mordike B L, Ebert T.Mater Sci Eng, 2001; A302: 37
[4] Chen Z H. Wrought Magnesium Alloy.Beijing: Chemical Industry Press, 2005: 1
[4] (陈振华. 变形镁合金. 北京: 化学工业出版社, 2005: 1)
[5] Mathaudhu S N, Luo A A, Neelameggham N R, Nyberg E A, Sillekens W H.Essential Readings in Magnesium Technology. Hoboken, New Jersey: John Wiley & Sons, Inc., 2014: 1
[6] Meyers M A, V?hringer O, Lubarda V A.Acta Mater, 2001; 49: 4025
[7] Wang Y N, Huang J C.Mater Trans, 2007; 48: 184
[8] Xu S W, Oh-ishi K, Sunohara H, Kamado S.Mater Sci Eng, 2012; A558: 356
[9] Jain J, Poole W J, Sinclair C W, Gharghouri M A.Scr Mater, 2010; 62: 301
[10] Yu H, Park S H, You B S.Mater Sci Eng, 2014; A610: 445
[11] Wang M. Master Thesis, Shenyang Aerospace University, 2012
[11] (王猛. 沈阳航空航天大学硕士学位论文, 2012)
[12] Zhang H. Master Thesis, Taiyuan University of Technology, 2014
[12] (张辉. 太原理工大学硕士学位论文, 2014)
[13] Zang H, Han B, Xu C X, Liu Q, Wang M.Foundry, 2014; 63: 1138
[13] (张辉, 韩宝, 许春香, 刘强, 王淼. 铸造, 2014; 63: 1138)
[14] Zhang Q, Li Q A, Zhang X Y, Zhou W.Foundry, 2011; 60: 857
[14] (张清, 李全安, 张兴渊, 周伟. 铸造, 2011; 60: 857)
[15] Zhao Y H, Wang M.Foundry, 2012; 61: 758(赵玉华, 王猛. 铸造, 2012; 61: 758)
[16] Meng E Q. Master Thesis, Xi'an University of Technology, 2008
[16] (孟恩强. 西安理工大学硕士学位论文, 2008)
[17] Liu C M, Zhu X R, Zhou H T. Magnesium Phase Diagram.Changsha: Central South University Press, 2006: 256
[17] (刘楚明, 主修荣, 周海涛. 镁合金相图. 长沙: 中南大学出版社, 2006: 256)
[18] Nie J F.Metall Mater Trans, 2012; 43A: 3891
[19] Remennik S, Bartsch I, Willbold E, Witte F, Shechtman D.Mater Sci Eng, 2011; B176: 1653
[20] Sasaki T T, Ohkubo T, Hono K.Scr Mater, 2009; 61: 72
[21] Yuan G Y, Sun Y S, Ding W J.Mater Sci Eng, 2001; A308: 38
[22] Guo E J, Ma B X, Wang L P.J Mater Process Technol, 2008; 206: 161
[23] Wang Y X, Fu J W, Wang J, Luo T J, Dong X G, Yang Y S.Acta Metall Sin, 2011; 47: 410
[23] (王亚霄, 付俊伟, 王晶, 罗天骄, 董旭光, 杨院生. 金属学报, 2011; 47: 410)
[24] Huang Z, Liu W, Qi W, Xu J, Zhou N.J Magne Alloy, 2015; 3: 29
[25] Humphreys F J, Hatherly M.Recrystallization and Related Annealing Phenomena. 2nd Ed., Oxford: Elsevier, 2004: 20
[26] Feng H, Liu H P, Cao H, Yang Y, Xu Y C, Guan J Y.Mater Sci Eng, 2015; A639: 1
[27] Yu H, Kim Y M, You B S, Yu H S, Park S H.Mater Sci Eng, 2013; A559: 798
[28] Ali Y, Qiu D, Jiang B, Pan F, Zhang M X.J Alloys Compd, 2015; 619: 639
[29] Yu H, Park S H, You B S, Kim Y M, Yu H S, Park S S.Mater Sci Eng, 2013; A583: 25
[30] Nie J F, Muddle B C, Polmear I J.In: Driver J H, Dubost B, Durand F, Fougeres R, Guyot P, Sainfort P, Suery M eds., Aluminium Alloys: Their Physical and Mechanical Properties, Stafa-Zurich, Switzerland: Trans Tech Publications Ltd., 1996; 217: 1257
[31] Liu Q.Acta Metall Sin, 2010; 46: 1458
[31] (刘庆. 金属学报. 2010; 46: 1458)
[32] Chen Z H, Xia W J, Cheng Y Q, Fu D F.Chin J Nonferrous Met, 2005; 15: 1
[32] (陈振华, 夏伟军, 程永奇, 傅定发. 中国有色金属学报, 2005; 15: 1)
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[8] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[11] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[14] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[15] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.