Please wait a minute...
金属学报  2016, Vol. 52 Issue (7): 797-803    DOI: 10.11900/0412.1961.2016.00004
  论文 本期目录 | 过刊浏览 |
不锈钢表面FeCoCrAlCuNiMox激光高熵合金化层的相演变*
吴臣亮1,张松1(),张春华1,关锰2,谭俊哲2
1 沈阳工业大学材料科学与工程学院, 沈阳 110870。
2 沈阳鼓风机集团核电泵业有限公司, 沈阳 110869。
PHASE EVOLUTION OF FeCoCrAlCuNiMox COATINGS BY LASER HIGH-ENTROPY ALLOYING ON STAINLESS STEELS
Chenliang WU1,Song ZHANG1(),Chunhua ZHANG1,Meng GUAN2,Junzhe TAN2
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2 Nuclear Power Pump Industry Co., Ltd., Shenyang Blower Works Group Corporation, Shenyang 110869, China
引用本文:

吴臣亮,张松,张春华,关锰,谭俊哲. 不锈钢表面FeCoCrAlCuNiMox激光高熵合金化层的相演变*[J]. 金属学报, 2016, 52(7): 797-803.
Chenliang WU, Song ZHANG, Chunhua ZHANG, Meng GUAN, Junzhe TAN. PHASE EVOLUTION OF FeCoCrAlCuNiMox COATINGS BY LASER HIGH-ENTROPY ALLOYING ON STAINLESS STEELS[J]. Acta Metall Sin, 2016, 52(7): 797-803.

全文: PDF(780 KB)   HTML
摘要: 

采用激光高熵合金化技术在2Cr13不锈钢表面制备FeCoCrAlCuNiMox (x=0, 0.5, 1, 摩尔分数) 激光高熵合金化层. 利用XRD, SEM, EDS及显微硬度计对FeCoCrAlCuNiMox激光高熵合金化层的相转变机制、微观组织形貌及硬度进行研究. 结果表明, 2Cr13不锈钢基材主元素Fe, Cr在激光辐照条件下参与了表面合金化过程, 形成了FeCoCrAlCuNiMox激光高熵合金化层; 随着Mo含量的增加, 合金化层相结构逐渐由fcc+bcc双相固溶体结构转变为fcc+bcc+hcp三相共存, hcp相主要为Ni3Mo和Co7Mo6, 且Ni3Mo相含量高于Co7Mo6相; 熔池的凝固温度在激光高熵合金化层相选择过程中起到重要作用. 激光高熵合金化层显微组织为典型的枝晶组织; 随着Mo含量的增加, 枝晶内析出块状Ni3Mo和Co7Mo6相. FeCoCrAlCuNiMox激光高熵合金化层的显微硬度在390~490 HV之间, 且Mo含量的增加显著提高高熵合金化层的硬度.

关键词 不锈钢激光高熵合金化相结构硬度    
Abstract

High-entropy alloys (HEAs), defined as solid solution alloys which have at least 5 principal elements but no more than 13 elements, with concentrations of each principal element ranging from 5% to 35% in atomic fraction, are emerging as one of the hot research frontiers in the metallic materials field. The significance of HEAs originates from their various combinations of high strength, good thermal stability and excellent resistance to corrosion, wear and oxidation. HEAs exhibit simple solid solutions with bcc and/or fcc structure(s) due to the effect of high mixing entropy in the solid solution state of HEAs, which may make the HEAs with improved mechanical and physical properties. However, a small quantity of intermetallic compounds can also form in certain HEAs, indicating that the formation of simple solid solutions cannot solely depend on the high mixing entropy. Then, the theory of HEAs based on the concept of entropy-enthalpy competition to judge whether or not simple phases will form was proposed. However, even if an alloy meets these criterions, it can still contain intermetallic phases. Why and how these intermetallics form in HEAs needs much more clarification. In this work, Co-Al-Cu-Ni-Mox (x=0, 0.5, 1) powder system with close-to-equiatomic ratios was mixed and laser surface alloyed onto 2Cr13 stainless steel substrates, and then the FeCoCrAlCuNiMox HEA coatings were obtained by reaction synthesis of Fe, Cr with Co-Al-Cu-Ni-Mox powder. The phase transition mechanism, microstructure and microhardness of FeCoCrAlCuNiMox coatings were investigated by XRD, SEM, EDS and microhardness tester. Experimental results showed that the principal elements of Fe, Cr in 2Cr13 stainless steel substrate participated in surface alloying process during the laser irradiation, forming FeCoCrAlCuNiMox laser high-entropy alloying coatings. With the increase of Mo content, the crystal structures of FeCoCrAlCuNiMox laser high-entropy alloying coatings evolved from fcc+bcc two-phase solid solution to fcc+bcc solid solution with hcp phase precipitations. The hcp phases were mainly Ni3Mo and Co7Mo6, and the content of Ni3Mo phase was higher than that of Co7Mo6. The phase formation analysis indicated that besides Ω and δ parameters, solidification temperature of the molten pool must be considered during the phase selection, instead of melting point as suggested previously. The microstructure of the coatings exhibited a typical dendrite structure. With the increase of Mo content, the block-shaped Ni3Mo and Co7Mo6 precipitated in the innerdendritic regions. The microhardness of the FeCoCrAlCuNiMox laser high-entropy alloying coatings was 390~490 HV, which significantly increased with the increase of Mo content.

Key wordsstainless steel    laser high-entropy alloying    phase constituent    microhardness
收稿日期: 2016-01-02     
基金资助:* 国家自然科学基金项目51271126和沈阳市科技计划项目F16-032-0-00资助
图1  FeCoCrAlCuNiMox (x=0, 0.5, 1)激光高熵合金化层XRD谱
图2  FeCoCrAlCuNiMox激光高熵合金化层在衍射角2θ=40°~47°局部XRD谱
x Ω δ / % e/a ΔHmix / (Jmol-1) ΔSmix / (JK-1mol-1)
0 5.075 4.983 7.849 -4797 14.909
0.5 6.784 4.980 7.700 -4079 16.013
1 8.336 4.950 7.579 -3517 16.186
表1  FeCoCrAlCuNiMox激光高熵合金化层合金系参数
图3  FeCoCrAlCuNiMox激光高熵合金化层宏观形貌
图4  FeCoCrAlCuNiMox激光高熵合金化层横截面SEM像
图5  FeCoCrAlCuNiMox激光高熵合金化层及基材的硬度
x Region Fe Co Cr Al Cu Ni Mo
0 A 22.34 17.06 6.87 20.89 11.79 21.06 -
B 22.10 14.66 4.01 17.38 22.37 19.48 -
0.5 A 24.21 19.44 4.34 11.53 10.87 22.83 6.78
B 21.87 13.86 5.56 15.43 20.87 17.56 4.85
1 A 18.91 15.83 6.74 10.48 12.83 18.37 16.84
B 21.08 14.79 5.97 8.46 18.96 17.45 13.29
C 4.82 19.32 2.54 1.13 0.87 56.45 14.87
表2  FeCoCrAlCuNiMox (x=0, 0.5, 1) 激光高熵合金化层微区EDS分析结果
[1] Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Tsau S Y.Adv Eng Mater, 2004; 6: 299
[2] Yeh J W, Chang S Y, Hong Y D, Chen S K, Lin S J.Mater Chem Phys, 2007; 103: 41
[3] Shon Y, Joshi S S, Katakam S, Rajamure R S, Dahotre N B.Mater Lett, 2015; 142: 122
[4] Zhang K B, Fu Z Y.Intermetallics, 2012; 22: 24
[5] Dong Y, Jiang L, Jiang H, Lu Y P, Wang T M, Li T J.Mater Des, 2015; 82: 91
[6] Hsu C Y, Sheu T S, Yeh J W, Chen S K.Wear, 2010; 268: 653
[7] Qiu X W, Liu C G.J Alloys Compd, 2013; 553: 216
[8] Zhang S, Wu C L, Zhang C H.Mater Lett, 2015; 141: 7
[9] Chen M, Liu Y, Li Y X, Chen X.Acta Metall Sin, 2007; 43: 1020
[9] (陈敏, 刘源, 李言祥, 陈祥. 金属学报, 2007; 43: 1020)
[10] Wang W R, Wang W L, Wang S C, Tsai Y C, Lai C H, Yeh J W.Intermetallics, 2012; 26: 44
[11] Wang F J, Zhang Y.Mater Sci Eng, 2008; A496: 214
[12] Tung C C, Yeh J W, Shun T T, Chen S K, Huang Y S, Chen H C.Mater Lett, 2007; 61: 1
[13] Zhang H, Pan Y, He Y Z.Mater Des, 2011; 32: 1910
[14] Qiu X W, Zhang Y P, He L, Liu C G.J Alloys Compd, 2013; 549: 195
[15] Zhang H, Pan Y, He Y Z, Jiao H S.Appl Surf Sci, 2011; 257: 2259
[16] Kunce I, Polanski M, Karczewski K, Plocinski T, Kurzydlowski K J.J Alloys Compd, 2015; 648: 751
[17] Zhang H, Pan Y, He Y Z.Acta Metall Sin, 2011; 47: 1075
[17] (张晖, 潘冶, 何宜柱. 金属学报, 2011; 47: 1075)
[18] Zhang S, Wu C L, Yi J Z, Zhang C H.Surf Coat Technol, 2015; 262: 64
[19] Zhang S, Wu C L, Wang C, Yi J Z, Zhang C H.Acta Metall Sin, 2014; 50: 555
[19] (张松, 吴臣亮, 王超, 伊俊振, 张春华. 金属学报, 2014; 50: 555)
[20] Tong C J, Chen M R, Chen S K, Yeh J W, Shun T T, Lin S J, Chang S Y.Metall Mater Trans, 2005; 36A: 1263
[21] Zhu J M, Zhang H F, Fu H M, Wang A M, Li H, Hu Z Q.J Alloys Compd, 2010; 497: 52
[22] Man H C, Zhang S, Cheng F T, Yue T M.Scr Mater, 2002; 46: 229
[23] Zhang Y, Zuo T T, Tang Z, Gao M C, Dahmen K A, Liaw P K, Zhao P L.Prog Mater Sci, 2014; 61: 1
[24] Cheng J B, Liang X B, Xu B S.Surf Coat Technol, 2014; 240: 184
[25] Lin Y C, Cho Y H.Surf Coat Technol, 2009; 203: 1694
[26] Yang X, Zhang Y.Mater Chem Phys, 2012; 132: 233
[27] Guo S, Liu C T.Prog Nat Sci, 2011; 21: 433
[28] Swalin R A.Thermodynamics of Solid. 2nd Ed, New York: Wiley, 1991: 21
[29] Takeuchi A, Inoue A. Mater Trans, 2005; 46: 2817
[30] Chen S T, Tang W Y, Kuo Y F, Chen S Y, Tsau C H, Shun T T, Yeh J W.Mater Sci Eng, 2010; A527: 5818
[1] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[2] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[3] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[4] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[5] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[6] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[7] 王海峰, 张志明, 牛云松, 杨延格, 董志宏, 朱圣龙, 于良民, 王福会. 前置渗氧对TC4钛合金低温等离子复合渗层微观结构和耐磨损性能的影响[J]. 金属学报, 2023, 59(10): 1355-1364.
[8] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[9] 温冬辉, 姜贝贝, 王清, 李相伟, 张鹏, 张书彦. MoNb改性FeCrAl不锈钢高温组织演变和力学性能[J]. 金属学报, 2022, 58(7): 883-894.
[10] 王韬, 龙弟均, 余黎明, 刘永长, 李会军, 王祖敏. 超高压烧结制备14Cr-ODS钢及微观组织与力学性能[J]. 金属学报, 2022, 58(2): 184-192.
[11] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[12] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[13] 骆文泽, 胡龙, 邓德安. SUS316不锈钢马鞍形管-管接头的残余应力数值模拟及高效计算方法开发[J]. 金属学报, 2022, 58(10): 1334-1348.
[14] 潘庆松, 崔方, 陶乃镕, 卢磊. 纳米孪晶强化304奥氏体不锈钢的应变控制疲劳行为[J]. 金属学报, 2022, 58(1): 45-53.
[15] 项兆龙, 张林, XIN Yan, 安佰灵, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, 王恩刚. Cr含量对FeCrCoSi永磁合金调幅分解组织及其性能的影响[J]. 金属学报, 2022, 58(1): 103-113.