Please wait a minute...
金属学报  2016, Vol. 52 Issue (7): 866-874    DOI: 10.11900/0412.1961.2015.00620
  论文 本期目录 | 过刊浏览 |
定向凝固Al-Y合金组织演化规律及小平面相生长*II. Al-53%Y包晶合金组织演化规律
刘桐1,骆良顺1,张延宁2,苏彦庆1(),郭景杰1,傅恒志1
1 哈尔滨工业大学金属精密热加工国家级重点实验室, 哈尔滨 150001。
2 沈阳黎明航空发动机(集团)有限责任公司, 沈阳 110043。
MICROSTRUCTURE EVOLUTION AND GROWTH BEHAVIORS OF FACETED PHASE IN DIRECTIONALLYSOLIDIFIED Al-Y ALLOYS II. Microstructure Evolution of Directionally Solidified Al-53%Y Peritectic Alloy
Tong LIU1,Liangshun LUO1,Yanning ZHANG2,Yanqing SU1(),Jingjie GUO1,Hengzhi FU1
1 National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001, China. 2 Shenyang Liming Aero-Engine Group Corporation LTD, Shenyang 110043, China.
2 Shenyang Liming Aero-Engine Group Corporation LTD, Shenyang 110043, China.
引用本文:

刘桐,骆良顺,张延宁,苏彦庆,郭景杰,傅恒志. 定向凝固Al-Y合金组织演化规律及小平面相生长*II. Al-53%Y包晶合金组织演化规律[J]. 金属学报, 2016, 52(7): 866-874.
Tong LIU, Liangshun LUO, Yanning ZHANG, Yanqing SU, Jingjie GUO, Hengzhi FU. MICROSTRUCTURE EVOLUTION AND GROWTH BEHAVIORS OF FACETED PHASE IN DIRECTIONALLYSOLIDIFIED Al-Y ALLOYS II. Microstructure Evolution of Directionally Solidified Al-53%Y Peritectic Alloy[J]. Acta Metall Sin, 2016, 52(7): 866-874.

全文: PDF(1625 KB)   HTML
  
摘要: 

对Al-53%Y (质量分数)包晶合金在1~100 μm/s的抽拉速率下进行定向凝固实验, 研究了合金组织演化及包晶合金中两相的竞争和生长行为. 结果表明, 铸态Al-53%Y合金的显微组织主要由初生Al2Y相、包晶Al3Y相和Al3Y/Al共晶体组成. 在低速1 μm/s定向凝固过程中, 初生相与包晶相均连续生长, 出现了平行于固/液界面的近似带状组织. 随着凝固距离的增加, 固/液界面处的领先相由初生Al2Y转变为包晶Al3Y, 固/液界面为粗大条形Al3Y相, 而无初生相. 在较高抽拉速率的定向凝固过程中, 随着抽拉速率的增加, Al2Y相由平界面生长转变为胞状形态, 后又转变为枝晶状. 包晶相Al3Y最初以锯齿状包裹在初生相表面, 同时在液相中以细针状直接析出, 抽拉速率越大, 包晶相Al3Y数量越多且尺寸越细小. 随着凝固距离的延长, 包裹初生相的包晶相厚度增加, 体积分数增大. 另外, 从液相中直接析出的Al3Y相逐渐长大, 由细针状变为短棒状、块状, 均匀分布在包晶组织周围并与之相连接.

关键词 Al-Y包晶合金定向凝固金属间化合物小平面生长    
Abstract

Peritectic reaction is frequently encountered in many technologically important materials (e.g., steels, brass, bronze, intermetallic compounds, magnetic materials and YBa2Cu3Ox superconductors). Many interesting microstructures have been found during directional solidification of peritectic alloys, which have drawn much attention since last decade. In this work, in order to investigate the growth behavior of Al3Y phase as a peritectic phase, directioanal solidification experiments at different pulling rates have been performed on Al-53%Y (mass fraction) peritectic alloy. The results show that the primary phase and the peritectic phase both grow continuously, the microstructure, which is parallel to the solid-liquid interface has been found and explained at a low pulling rate (V=1 μm/s). With the growth distance increase, the precipitating solid phase from the liquid at the quenching solid-liquid interface transforms from primary Al2Y phase to peritectic Al3Y phase. The interface consists of coarse Al3Y phase without Al2Y phase. At relatively high pulling rates, the morphologies of primary Al2Y phase transit from continuous growth to cellular phase, and further to dendrites with the pulling rate increase. The results also show that the primary phase is enclosed with the serrate peritectic phase, and Al3Y phase precipitates from the liquid in needle shape at the same time. With the growth distance further increase, Al3Y phase become thicker and more numerous. In addition, the Al3Y phase precipitated from liquid transit from needle shape to short rod and lump shape, which distributes around the peritectic structure.

Key wordsAl-Y peritectic alloy    directional solidification    intermetallics compound    faceted growth
收稿日期: 2015-12-03     
基金资助:* 国家自然科学基金项目51425402, 51371066和51331005资助
图1  Al-53%Y包晶合金铸态组织的SEM-BSE像
图2  较低抽拉速率下定向凝固Al-53%Y包晶合金纵向截面微观组织的OM和SEM-BSE像
图3  较高抽拉速率下定向凝固Al-53%Y包晶合金纵向截面微观组织的OM和SEM-BSE像
图4  定向凝固Al-Y包晶合金带状组织形成过程示意图
图5  定向凝固生长启动后固相生长引起溶质含量变化示意图
图6  不同抽拉速率下定向凝固Al-53%Y包晶合金中初生Al2Y相形貌的SEM-BSE像
图7  不同抽拉速率下定向凝固Al-53%Y包晶合金和Al-15%Y共晶合金中Al3Y相生长形貌的SEM-BSE像
[1] Asta M, Beckermann C, Karma A, Kurz W, Napolitano R, Plapp M, Purdy G, Rappaz, Trivedi R.Acta Mater, 2009; 57: 941
[2] Dobler S, Lo T S, Plapp M, Karma A, Kurz W.Acta Mater, 2004; 52: 2795
[3] Lo T S, Dobler S, Plapp M, Karma A, Kurz W.Acta Mater, 2003; 51: 599
[4] Luo L S, Su Y Q, Guo J J, Li X Z, Li S M, Zhong H, Liu L, Fu H Z. J Alloys Compd, 2008; 461: 121
[5] Phelan D, Reid M, Dippenaar R.Mater Sci Eng, 2008; A477: 226
[6] Luo L S, Zhang Y M, Su Y Q, Wang X, Guo J J, Fu H Z.Acta Metall Sin, 2011; 47: 275
[6] (骆良顺, 张宇民, 苏彦庆, 王新, 郭景杰, 傅恒志. 金属学报, 2011; 47: 275)
[7] Luo L S, Fu H Z, Zhang Y M, Li X Z, Su Y Q, Guo J J.Acta Metall Sin, 2011; 47: 284
[7] (骆良顺, 傅恒志, 张宇民, 李新中, 苏彦庆, 郭景杰. 金属学报, 2011; 47: 284)
[8] Feng Z R, Shen J, Min Z X, Wang L S, Fu H Z.Mater Lett, 2012; 67: 14
[9] Su Y Q, Liu C, Li X Z, Guo J J, Li B S, Jia J, Fu H Z.Intermeta-llics, 2005; 13: 267
[10] Zhong H, Li S M, Liu L, Lü H Y, Zou G R, Fu H Z.J Cryst Growth, 2009; 311: 420
[11] Huang X M, Uda S, Yao X, Koh S.J Cryst Growth, 2006; 294: 420
[12] Valloton J, Dantzig J A, Plapp M, Rappaz M.Acta Mater, 2013; 61: 5549
[13] Li S M, Lu H Y, Li X L, Liu L, Fu H Z.Rare Met Mater Eng, 2005; 34: 234
[13] (李双明, 吕海燕, 李晓历, 刘林, 傅恒志. 稀有金属材料与工程, 2005; 34: 234)
[14] Aswal D K, Shinmura M, Hayakawa Y, Kumagawa M.J Cryst Growth, 1998; 193: 61
[15] Liu D M, Li X Z, Su Y Q, Peng P, Luo L S, Guo J J, Fu H Z.Acta Mater, 2012; 60: 2679
[16] Li S M, Lu H Y, Zhang R, Liu L, Fu H Z.Trans Nonferrous Met Soc China, 2005; 15: 379
[17] Li S M, Ma B L, Lü H Y, Liu L, Fu H Z.Acta Metall Sin, 2005; 41: 411
[17] (李双明, 马伯乐, 吕海燕, 刘林, 傅恒志. 金属学报, 2005; 41: 411)
[18] Lü H Y, Li S M, Zhong H, Fu H Z.Rare Met, 2015; 39: 111
[18] (吕海燕, 李双明, 钟宏, 傅恒志. 稀有金属, 2015; 39: 111)
[19] Luo L S, Liu T, Zhang Y N, Su Y Q, Guo J J, Fu H Z.Acta Metall Sin, 2016; 52: 859
[19] (骆良顺, 刘桐, 张延宁, 苏彦庆, 郭景杰, 傅恒志. 金属学报, 2016; 52: 859)
[20] Liu D M, Li X Z, Su Y Q, Luo L S, Zhang B, Guo J J, Fu H Z.Mater Lett, 2011; 65: 1628
[21] Luo W Z, Shen J, Min Z X, Fu H Z.Mater Lett, 2009; 63: 1419
[22] Trivedi R, Shin J H.Mater Sci Eng, 2005; A413: 288
[23] Trivedi R.Metall Trans, 1995; 26A: 1583
[24] Tiller W A.J Cryst Growth, 1969; 6: 77
[25] Rettenmayr M.Int Mater Rev, 2009; 54: 1
[26] Loffler A, Reuther K, Engelhardt H, Liu D M, Rettenmayr M.Acta Mater, 2015; 91: 34
[27] Liu S H, Du Yong, Xu H H, He C Y, Schuster J.J Alloys Compd, 2006; 414: 60
[28] Fu H Z, Guo J J, Liu L, Li J S.Directional Solidification and Processing of Advanced Materials. Beijing: Science Press, 2008: 132
[28] (傅恒志, 郭景杰, 刘林, 李金山. 先进材料定向凝固. 北京: 科学出版社, 2008: 132)
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[4] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[5] 丁宗业, 胡侨丹, 卢温泉, 李建国. 基于同步辐射X射线成像液/固复层界面氢气泡的形核、生长演变与运动行为的原位研究[J]. 金属学报, 2022, 58(4): 567-580.
[6] 周丽君, 位松, 郭敬东, 孙方远, 王新伟, 唐大伟. 基于飞秒激光时域热反射法的微尺度Cu-Sn金属间化合物热导率研究[J]. 金属学报, 2022, 58(12): 1645-1654.
[7] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[8] 张小丽, 冯丽, 杨彦红, 周亦胄, 刘贵群. 二次枝晶取向对镍基高温合金晶粒竞争生长行为的影响[J]. 金属学报, 2020, 56(7): 969-978.
[9] 宫声凯, 尚勇, 张继, 郭喜平, 林均品, 赵希宏. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(9): 1067-1076.
[10] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
[11] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[12] 方辉,薛桦,汤倩玉,张庆宇,潘诗琰,朱鸣芳. 定向凝固糊状区枝晶粗化和二次臂迁移的实验和模拟[J]. 金属学报, 2019, 55(5): 664-672.
[13] 唐文书,肖俊峰,李永君,张炯,高斯峰,南晴. 再热恢复处理对蠕变损伤定向凝固高温合金γ′相的影响[J]. 金属学报, 2019, 55(5): 601-610.
[14] 吉华,邓运来,徐红勇,郭伟强,邓建峰,范世通. 焊接线能量对5182-O/HC260YD+Z异种材料CMT搭接接头组织与性能的影响[J]. 金属学报, 2019, 55(3): 376-388.
[15] 杨燕, 杨光昱, 罗时峰, 肖磊, 介万奇. Mg-14.61Gd合金的定向凝固组织及生长取向[J]. 金属学报, 2019, 55(2): 202-212.