Please wait a minute...
金属学报  2016, Vol. 52 Issue (6): 734-740    DOI: 10.11900/0412.1961.2015.00502
  论文 本期目录 | 过刊浏览 |
石墨/紫铜间接钎焊接头的界面组织及力学性能*
付伟1,2(),宋晓国1,2,龙隆2,柴鉴航2,冯吉才1,2,王国栋2
1) 哈尔滨工业大学先进焊接与连接国家重点实验室, 哈尔滨 150001
2) 哈尔滨工业大学(威海)山东省特种焊接技术重点实验室, 威海 264209
INTERFACIAL MICROSTRUCTURE AND MECHANI-CAL PROPERTIES OF INDIRECT BRAZED GRAPHITE/COPPER JOINT
Wei FU1,2(),Xiaoguo SONG1,2,Long LONG2,Jianhang CHAI2,Jicai FENG1,2,Guodong WANG2
1 State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
2 Shandong Provincial Key Lab of Special Welding Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
引用本文:

付伟,宋晓国,龙隆,柴鉴航,冯吉才,王国栋. 石墨/紫铜间接钎焊接头的界面组织及力学性能*[J]. 金属学报, 2016, 52(6): 734-740.
Wei FU, Xiaoguo SONG, Long LONG, Jianhang CHAI, Jicai FENG, Guodong WANG. INTERFACIAL MICROSTRUCTURE AND MECHANI-CAL PROPERTIES OF INDIRECT BRAZED GRAPHITE/COPPER JOINT[J]. Acta Metall Sin, 2016, 52(6): 734-740.

全文: PDF(807 KB)   HTML
  
摘要: 

在950 ℃, 30 min条件下, 采用含活性元素Ti的Sn0.3Ag0.7Cu-xTi (x=1.0, 1.2, 1.4, 1.6, 1.8, 质量分数, %)金属粉末对石墨进行反应金属化, 然后用Sn0.3Ag0.7Cu钎料在真空条件下实现了紫铜和石墨的间接钎焊. 钎焊接头的典型界面结构为: 紫铜/Cu3Sn/Cu6Sn5/β-Sn/TiC/石墨. 在反应金属化过程中金属化粉末中的Ti起到重要作用, 而Ti含量对钎焊接头的界面组织和抗剪强度没有影响. 随着钎焊温度升高, 紫铜中越来越多的Cu溶解到液相钎料中反应生成Cu-Sn化合物, 接头的抗剪强度有一定程度的提高. 断口分析表明: 接头主要在β-Sn层中断裂, 并呈现韧性断裂. 当Cu-Sn化合物充满整个钎缝(600 ℃), 接头强度大幅提高, 达到30 MPa, 接头在石墨母材完全断裂.

关键词 金属化石墨紫铜间接钎焊    
Abstract

Graphite and metal composite structures were widely used in aerospace, electrical engineering and electronics. Because of its conveniences and less cost, brazing was widely used to bond graphite and metals. Due to the differences in microstructure, graphite was difficult to be wetted by traditional braze alloys. To improve the wettability of traditional brazing alloys on graphite, active brazing process and indirect brazing process were developed to braze graphite to metals. As to active brazing process, active elements (such as Ti, Cr, Zr) were added into traditional brazing alloys, a high brazing temperature, was essential to guarantee the reaction of active elements with graphite. However, the mechanical properties of metals will degrade under high temperature. Electroplating and chemical plating were the general techniques for indirect brazing process. The covered coating had a mechanical combination which decreased the joint strength, rather than metallurgical bonding with graphite. Therefore, in this work, a new metallization method was proposed. On the one hand, a metallurgical bonding was formed between metallization layer and graphite substrate. On the other hand, graphite could be brazed to metal at a relatively low temperature. Firstly, graphite was metalized by Ti-containing Sn0.3Ag0.7Cu metallization powder at 950 ℃ for 30 min. Then metalized graphite was brazed with copper by Sn0.3Ag0.7Cu successfully. The typical interfacial structure of brazed joint was copper/Cu3Sn/Cu6Sn5/β-Sn/TiC/graphite. Element Ti of metallization powder played an important role in metallization process for a reaction layer TiC was formed on the interface of graphite and metallization layer. Nevertheless, Ti contents had no effect on interfacial structure and shear strength of brazed joint. With the increase of brazing temperature, more and more element Cu dissolved into molten solder and formed Cu-Sn compounds by reacting with Sn. Furthermore, shear strength was improved slightly. Fracture analysis reveals that cracks extended along β-Sn layer and presented ductile fracture. When Cu-Sn compounds occupied the entire brazing seam (joint brazed at 600 ℃), shear strength improved remarkably and reached 30 MPa. Additionally, the joint was fractured in graphite entirely.

Key wordsmetallization    graphite    copper    indirect brazing
收稿日期: 2015-09-25     
基金资助:* 国家自然科学基金项目51405099和上海航天科技创新基金项目SAST2015045资助
图1  钎焊装配图
图2  Ti含量为1.4%时金属化层典型微观组织的SEM像
图3  石墨、金属化层和反应层的XRD谱
图4  Ti含量对金属化层界面结构的影响
Point in Fig.2 Sn Ag Cu Ti C Possible phase
A 98.34 0.52 1.07 0.07 - β-Sn
B 2.51 0.01 0.06 49.56 47.86 TiC
C 93.72 0.47 0.85 0.38 4.58 β-Sn
表1  图2中金属化层反应产物EDS分析结果
图5  Ti含量为1.6%, 钎焊温度520 ℃, 保温5 min时典型紫铜/石墨接头界面组织形貌的SEM像
Point in Fig.5a Sn Ag Cu Ti Possible phase
A 24.65 0.30 75.05 0 Cu3Sn
B 44.92 0.15 54.88 0.05 Cu6Sn5
C 97.93 0.47 0.85 0.75 β-Sn
表2  图5a所标记点的EDS分析结果
图6  钎焊温度520 ℃, 保温5 min时Ti含量对紫铜/石墨接头界面组织的影响
图7  Ti含量对接头抗剪强度的影响
图8  Ti含量为1.6%, 钎焊温度520 ℃, 保温5 min条件下紫铜/石墨钎焊接头断口形貌及XRD谱
图9  Ti含量为1.6%时钎焊温度对紫铜/石墨接头界面组织的影响
图10  钎焊温度对紫铜/石墨接头抗剪强度的影响
图11  600 ℃时钎焊接头断口宏观照片
[1] Zhong Z H, Zhou Z J, Ge C.J Mater Process Technol, 2009; 209: 2662
[2] Sueyoshi H, Fukudome H.Mater Trans, 2008; 49: 2063
[3] Xiong H P, Wan C G, Zhou Z F.Acta Metall Sin, 1999; 35: 527
[3] (熊华平, 万传庚, 周振丰. 金属学报, 1999; 35: 527)
[4] Chen B, Xiong H P, Mao W, Guo W L, Cheng Y Y, Li X H.Acta Metall Sin, 2007; 43: 1181
[4] (陈波, 熊华平, 毛唯, 郭万林, 程耀永, 李晓红. 金属学报, 2007; 43: 1181)
[5] Liu Y, Jiang G F, Xu K, Luo X M, Chen D Q, Li W.Acta Metall Sin, 2015; 51: 209
[5] (刘毅, 江国锋, 许昆, 罗锡明, 陈登权, 李伟. 金属学报, 2015; 51: 209)
[6] Ray A K, Kar A, Kori S A, Pathak L C, Sonnad A N.J Mater Eng Perform, 2013; 22: 258
[7] Makimura S, Ozaki H, Okamura H, Futakawa M, Naoe T, Miyake Y, Kawamura N, Nishiyama K, Kawai M.J Nucl Mater, 2008; 377: 28
[8] Caturla F, Molina F, Molina-Sabio M, Rodriguez-Reinoso F, Esteban A.J Electrochem Soc, 1995; 142: 4084
[9] Moutis N, Jimenez C, Azpiroz X, Speliotis T, Wilhelmi C, Messoloras S, Mergia K.J Mater Sci, 2010; 45: 74
[10] Wang Y Y, Li S J, Yan L S.Rare Met Mater Eng, 2005; 34: 970
[10] (王艳艳, 李树杰, 闫联生. 稀有金属材料与工程, 2005; 34: 970)
[11] Li Y Q, Zhang Z D, Den C Q, Su Y S.Mater Charact, 2000; 44: 425
[12] Zhang Z H, Zhou Z J, Song S X, Du J, Ge C C.Rare Met Mater Eng, 2006; 35: 117
[12] (钟志宏, 周张健, 宋书香, 都娟, 葛昌纯. 稀有金属材料与工程, 2006; 35: 117)
[13] Singh M, Smith C, Asthana R, Gyekenyesi A.Int J Appl Ceram Technol, 2013; 10: 790
[14] Song X G, Cao J, Liu J K, Wang Y F, Feng J C. Chin Pat, 10094289.8, 2014(宋晓国, 曹健, 刘甲坤, 王义峰, 冯吉才. 中国专利,10094289.8, 2014)
[15] Okamoto H. J Phase Equilib Diff, 2010; 31: 202
[16] Singh M, Shpargel T P, Morscher G N, Asthana R.Mater Sci Eng, 2005; A412: 123
[17] Wang B Y. Mater Thesis, China University of Petroleum, Dong- ying, 2009
[17] (王宝阳. 中国石油大学硕士学位论文, 东营, 2009)
[18] Naidich Y.Curr Opin Solid State Mater Sci, 2005; 9: 161
[19] Standing R, Nicholas M.J Mater Sci, 1978; 13: 1509
[20] Singh M, Smith C, Asthana R, Gyekenyesi A.Int J Appl Ceram Technol, 2013; 10: 790
[21] Yu W Y, Liu S H, Liu X Y, Liu M P, Shi W G.J Mater Process Technol, 2015; 221: 285
[22] Zhu W J, Wang J, Liu L B, Liu H S, Jin Z P, Leinenbach C.Comput Mater Sci, 2013; 78: 74
[23] Laurila T, Vuorinen V, Kivilahti J K.Mater Sci Eng, 2005; R49: 1
[24] Hwang C W, Kim K S, Suganuma K.J Electron Mater, 2003; 32: 1249
[25] Gong J, Liu C, Conway P P, Silberschmidt V V.Acta Mater, 2008; 56: 4291
[1] 潘成成, 张翔, 杨帆, 夏大海, 何春年, 胡文彬. 三维石墨烯/Cu复合材料在模拟海水环境中的腐蚀和空蚀行为[J]. 金属学报, 2022, 58(5): 599-609.
[2] 赵乃勤, 郭斯源, 张翔, 何春年, 师春生. 基于增强相构型设计的石墨烯/Cu复合材料研究进展[J]. 金属学报, 2021, 57(9): 1087-1106.
[3] 林彰乾, 郑伟, 李浩, 王东君. 放电等离子烧结TA15钛合金及石墨烯增强TA15复合材料微观组织与力学性能[J]. 金属学报, 2021, 57(1): 111-120.
[4] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[5] 张婷,赵宇宏,陈利文,梁建权,李沐奚,侯华. 触变注射成形法制备石墨烯纳米片增强镁基复合材料[J]. 金属学报, 2019, 55(5): 638-646.
[6] 张荻, 苑孟颖, 谭占秋, 熊定邦, 李志强. 金刚石/Cu复合界面导热改性及其纳米化研究进展[J]. 金属学报, 2018, 54(11): 1586-1596.
[7] 刘晓云,王文广,王东,肖伯律,倪丁瑞,陈礼清,马宗义. 片层石墨尺寸对片层石墨/Al复合材料的强度和热导率的影响[J]. 金属学报, 2017, 53(7): 869-878.
[8] 薛滢妤, 唐建成, 卓海鸥, 叶楠, 吴桐, 周旭升. 渗碳体石墨化制备无铅易切削石墨黄铜的组织及性能*[J]. 金属学报, 2015, 51(2): 223-229.
[9] 张新宁,曲迎东,李荣德,尤俊华. 铁素体球墨铸铁低温冲击断裂裂纹形核及扩展机理*[J]. 金属学报, 2015, 51(11): 1333-1340.
[10] 王长罡 邓为民 赵广宇 董俊华 柯伟 陈学斌. 换热器T2紫铜管在潮湿状态下的腐蚀机理研究[J]. 金属学报, 2012, 48(7): 815-821.
[11] 田艳红 王春青 赵少伟. Cu焊盘TiN/Ag金属化层超声键合性能及抗氧化性能[J]. 金属学报, 2010, 46(5): 618-622.
[12] 肖克来提; 盛玫; 罗乐 . Ag-Pd和Ni对无铅钎料焊点形状、微结构及剪切强度的影响[J]. 金属学报, 2001, 37(6): 647-652 .
[13] 谢天生; 戴贵平; 成会明; 范兆忠; 叶恒强 . 高定向石墨表面激光溅射硼及超结构的扫描隧道显微镜观察[J]. 金属学报, 1999, 35(7): 685-688 .
[14] 胡晓军;薛向欣;段培宁;黄晓煜. 铁液在自焙炭块中的渗透过程[J]. 金属学报, 1998, 34(4): 384-387.
[15] 杨显杰;高庆;向阳开;蔡力勋. 紫铜的非比例循环塑性变形行为实验研究[J]. 金属学报, 1998, 34(10): 1055-1060.