Please wait a minute...
金属学报  2016, Vol. 52 Issue (3): 361-368    DOI: 10.11900/0412.1961.2015.00326
  论文 本期目录 | 过刊浏览 |
合金成分和冷却速率对Al-Cu合金凝固过程中初生Al2Cu相生长形貌的影响*
王富鑫,骆良顺(),王亮,张东徽,李新中,苏彦庆,郭景杰,傅恒志
哈尔滨工业大学材料科学与工程学院精密热加工国家级重点实验室, 哈尔滨 150001
EFFECT OF ALLOY COMPOSITION AND COOLING RATE ON THE GROWTH MORPHOLOGY OF PRIMARY Al2Cu PHASE IN Al-Cu ALLOY DURING SOLIDIFICATION
Fuxin WANG,Liangshun LUO(),Liang WANG,Donghui ZHANG,Xinzhong LI,Yanqing SU,Jingjie GUO,Hengzhi FU
National Key Laboratory for Precision Hot Processing of Metals, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
引用本文:

王富鑫, 骆良顺, 王亮, 张东徽, 李新中, 苏彦庆, 郭景杰, 傅恒志. 合金成分和冷却速率对Al-Cu合金凝固过程中初生Al2Cu相生长形貌的影响*[J]. 金属学报, 2016, 52(3): 361-368.
Fuxin WANG, Liangshun LUO, Liang WANG, Donghui ZHANG, Xinzhong LI, Yanqing SU, Jingjie GUO, Hengzhi FU. EFFECT OF ALLOY COMPOSITION AND COOLING RATE ON THE GROWTH MORPHOLOGY OF PRIMARY Al2Cu PHASE IN Al-Cu ALLOY DURING SOLIDIFICATION[J]. Acta Metall Sin, 2016, 52(3): 361-368.

全文: PDF(8110 KB)   HTML
摘要: 

对Al-xCu (x=30, 40, 45, 50, 质量分数, %)合金凝固组织进行了系统的观察. 结果表明, 随合金中Cu含量由30% (质量分数, 下同)增加到50%, 合金中初生Al2Cu相形貌由枝晶状逐渐转变为棱面状, 表明Al2Cu相的生长方式由非小平面生长转变为小平面生长. 冷却速率对初生Al2Cu相生长形貌具有重要影响, 冷却速率较低时, 初生Al2Cu相为规则的棱面状; 随着冷却速率增大, 初生Al2Cu相逐渐转变为不规则的非棱面状, 表明Al2Cu相的生长方式由小平面生长转变为非小平面生长. 对凝固过程中初生Al2Cu相形貌转变研究发现, Cu含量为45%时, 初生Al2Cu相形貌由枝晶状向方形转变; Cu含量增加到50%时, 初生Al2Cu相形貌由枝晶状转变为网状.

关键词 Al-Cu合金Al2Cu相生长形貌    
Abstract

Intermetallic compounds have unique natures. Due to the natures of high temperature resistance, high strength and high hardness, intermetallic compounds always exist as strengthening phase in many alloys. The primary Al2Cu phase in Al-Cu alloys is an intermetallic phase. The morphology, size and distribution of intermetallic compounds phases have largely effects on the mechanical properties of materials. Morphological evolution of intermetallic compounds is necessarily theoretical basis for controlling the size, morphology and improving the performance of intermetallic compound materials in the solidification process. At present, there are many reports on the research of Al-Cu alloys, the main research is focused on the eutectic point and 4.7%Cu (mass fraction) of Al-Cu alloys, but other composition alloys are less considered. The growth mechanism of Al2Cu phase and the primary Al2Cu phase structure of Al-Cu alloy are studied recently. However, the specific growth mechanism of Al2Cu phase is currently not very clear. Alloy composition and cooling rate are often encountered in the ordinary metal melting and solidification. The change of solidification conditions will lead to the transformation of heat and solute in the melt, which will form different morphologies. In this work, the effect of alloy composition and cooling rate on the morphologies and growth behavior of Al2Cu phase in Al-Cu alloys was studied. Through the microstructure observation of Al-xCu (x=30, 40, 45, 50, mass fraction) alloys, it was found that primary Al2Cu phase morphologies transformed from dendritic shape to regular bulk with the Cu content increased from 30% (mass fraction) to 50% in the alloy, which indicated that Al2Cu phase growth changed from non-faceted growth to faceted growth. Cooling rate also had a vital influence on primary Al2Cu phase morphologies. Under low cooling rate, primary Al2Cu phase morphologies were regular bulk. The morphologies of primaryAl2Cu phases were transformed into dendritic shape with the increasing of cooling rate. The specific morphology transformation rule of primary Al2Cu phases in Al-Cu alloys was also studied in the solidification process. It was found that when Cu content was 45%, the morphology transformation of primary Al2Cu phases was from dendritic shape to square morphologies. While when Cu content was increased to 50%, the morphology transformation of primary Al2Cu phases was from dendritic shape to reticular morphologies.

Key wordsAl-Cu alloy    Al2Cu phase    growth morphology
收稿日期: 2015-06-23     
基金资助:* 国家自然科学基金项目51425402, 51371066和51331005, 以及国家重点基础研究发展计划项目2011CB610406资助
图1  纽扣锭熔炼示意图
图2  不同成分Al-Cu合金显微组织的OM像
图3  Al-Cu合金中Cu含量与Al2Cu相Jackson因子α的关系
图4  Al-45%Cu合金纵截面显微组织
图5  Al-45%Cu和Al-50%Cu合金横截面显微组织
图6  Al-45%Cu合金横截面初生Al2Cu相形貌
图7  Al-45%Cu合金横截面初生Al2Cu相形貌转变示意图
图8  Al-50%Cu合金横截面初生Al2Cu相形貌
图9  Al-50%Cu合金横截面初生Al2Cu相形貌转变示意图
[1] Chen G L.Mater Rev, 2000; 14(9): 1
[1] (陈国良. 材料导报, 2000; 14(9): 1)
[2] Li A M, Dong W F, Sun K N.Adv Ceram, 2004; (2): 27
[2] (李爱民, 董维芳, 孙康宁. 现代技术陶瓷, 2004; (2): 27)
[3] Jackson K A.J Cryst Growth, 1969; 5: 13
[4] Wang H Y, Jiang Q C, Wang Y, Ma B X, Zhao F.Mater Lett, 2004; 58: 3509
[5] Wang D W.China Met Bull, 2008; (36): 34
[5] (王登文. 中国金属通报, 2008; (36): 34)
[6] Li X, Ren Z M, Fautrelle Y.Acta Mater, 2006; 54: 5349
[7] Hunt J D, Jackson K A.Trans Metall Soc AIME, 1996; 236: 843
[8] Martin Z, Alain K, Michel C.Phys Rev, 1990; 42B: 376
[9] Si N C, Sun K Q.Foundry, 2007; 56: 683
[9] (司乃潮, 孙克庆. 铸造, 2007; 56: 683)
[10] Zhou W, Liu L J, Li B L, Song Q G, Wu P.J Electron Mater, 2009; 38: 356
[11] Cai S H, Liu C W.Acta Chem Sin, 1998; 56: 118
[11] (蔡淑惠, 刘春万. 化学学报, 1998; 56: 118)
[12] Gao K, Li S M, Fu H Z.Acta Metall Sin, 2014; 50: 962
[12] (高卡, 李双明, 傅恒志. 金属学报, 2014; 50: 962)
[13] Gao K, Li S M, Xu L, Fu H Z.J Cryst Growth, 2014; 394: 89
[14] Li Z Z, Li S M, Fu H Z.Foundry Technol, 2010; 31: 1151
[14] (李珍珍, 李双明, 傅恒志. 铸造技术, 2010; 31: 1151)
[15] Dong Q.PhD Dissertation, Shanghai Jiao Tong University, 2010
[15] (东青. 上海交通大学博士学位论文, 2010)
[16] Gao H J, Xu B, Niu Y C, Wang W M, Sun B Y.Foundry Technol, 2005; 26: 703
[16] (高洪吉, 许斌, 牛玉超, 王伟民, 孙百来. 铸造技术, 2005; 26: 703)
[17] Tang J J.PhD Dissertation, Harbin Institute of Technology, 2009
[17] (汤进军. 哈尔滨工业大学博士学位论文, 2009)
[18] Mirshahi F, Meratian M, Panjepour M.Mater Sci Eng, 2011; A528: 8319
[19] Hu H Q. Metal Solidification Principle.Beijing: Machine Industry Press, 2010: 93
[19] (胡汉起. 金属凝固原理. 北京: 机械工业出版社, 2010: 93)
[20] Hofmann D C, Suh J Y, Wiest A, Duan G, Lind M L, Demetriou M D, Johnson W L.Nature, 2008; 451: 1085
[21] Cui Z Q, Liu B X.Principle of Metallography and Heat Treatment. Harbin: Harbin Institute of Technology Press, 2009: 57
[21] (崔忠圻, 刘北兴. 金属学与热处理原理. 哈尔滨: 哈尔滨工业大学出版社, 2009: 57)
[22] Cui C J, Zhang J, Su H J, Liu L, Fu H Z.J Cryst Growth, 2009; 311: 2555
[23] Ye D L.Practical Handbook of Thermodynamic Data for Inorganic Materials. Beijing: Metallurgical Industry Press, 1981: 55
[23] (叶大伦. 实用无机物热力学数据手册. 北京: 冶金工业出版社, 1981: 55)
[24] David R L.CRC Handbook of Chemistry and Physics. Tokyo: CRC Press, 1989: 5
[25] Jian Z Y, Kuribayashi K, Jie W Q.Mater Trans JIM, 2002; 43: 721
[26] Hamar R, Lemaignan C.J Cryst Growth, 1981; 53: 586
[27] Li R D, Sun Y X, Bai Y H, Yu H P, Huang Z P.Spec Casting Nonferr Alloys, 2001; 2: 57
[27] (李荣德, 孙玉霞, 白彦华, 于海朋, 黄忠平. 特种铸造及有色合金, 2001; 2: 57)
[28] Shangguan Y H, Wang J F, Zhang D S.Foundry Technol, 2010; 31:888
[28] (上官玉辉. 王杰芳, 张东升. 铸造技术, 2010; 31:888)
[1] 许虹宇,黄陆军,耿林,张杰,黄玉东. Cu含量对Al2O3·SiO2sf/Al-Cu复合材料耐磨性能的影响[J]. 金属学报, 2013, 49(9): 1131-1136.
[2] 张显飞,赵九洲. 来流对Al-Cu合金三维树枝晶生长的影响[J]. 金属学报, 2012, 48(5): 615-620.
[3] 房大然; 段启强; 黄崇湘; 吴世丁; 张哲峰; 李家俊; 赵乃勤 . 等通道转角挤压Al-Cu合金的冲击性能[J]. 金属学报, 2007, 43(12): 1251-1255 .
[4] 刘颢文; 张青川; 卢俊勇; 项国富; 伍小平 . Al-Cu合金中PLC剪切带成核过程三维变形的实验研究[J]. 金属学报, 2006, 42(9): 925-930 .
[5] 卢俊勇; 蒋震宇; 张青川 . Al-4%Cu多晶合金中锯齿形屈服现象的初步时序分析[J]. 金属学报, 2006, 42(6): 611-618 .
[6] 江慧丰; 张青川; 徐毅豪; 伍小平 . 时效对Al-Cu合金中锯齿形流动的影响[J]. 金属学报, 2006, 42(2): 139-142 .
[7] 孙亮; 张青川; 江慧丰 . 溶质浓度对Al-Cu合金中PLC效应的影响[J]. 金属学报, 2006, 42(12): 1248-1252 .
[8] 周刚; 王文皓 . 多元Al-Cu系合金凝固过程中显微偏析的计算模拟[J]. 金属学报, 2000, 36(5): 477-482 .
[9] 张济山;崔华;段先进;孙祖庆;陈国良. 雾化喷射沉积成型凝固过程模拟Ⅱ.Al-Cu合金的计算结果[J]. 金属学报, 1998, 34(1): 13-18.
[10] 徐达鸣;曹福洋;李庆春;王永前;张宝友. 变速生长条件下Al-Cu合金的定向凝固枝晶组织[J]. 金属学报, 1995, 31(11): 501-507.
[11] 沈军;蒋祖龄;曾松岩;崔成松;李庆春. 雾化沉积快速凝固过程的计算机模拟──Ⅰ.理论模型[J]. 金属学报, 1994, 30(20): 337-341.
[12] 葛云龙;杨院生;焦育宁;胡壮麒;高允彦;贾光霖. 电磁离心铸造工艺的研究[J]. 金属学报, 1993, 29(3): 88-89.
[13] 徐达鸣;李庆春;王永前. 定向共晶组织的熔化行为[J]. 金属学报, 1993, 29(10): 28-32.
[14] 徐达鸣;李庆春. 合金凝固传热、传质和液相流动的数值模拟及宏观偏析的预测[J]. 金属学报, 1990, 26(4): 125-129.