Please wait a minute...
金属学报  2016, Vol. 52 Issue (3): 349-354    DOI: 10.11900/0412.1961.2015.00289
  论文 本期目录 | 过刊浏览 |
Zn/CuxTiy体系固态反应周期层片型结构研究*
巩宇1,2,3,陈永翀1(),刘丹丹1,张艳萍1,3,CSERHÁTICsaba4,CSIKAttila5
1 中国科学院电工研究所, 北京 100190
2 中国科学院大学, 北京 100049
3 北京好风光储能技术有限公司, 北京 100085
4 Department of Solid State Physics, University of Debrecen, H-4010 Debrecen, Hungary
5 Institute for Nuclear Research, Hungarian Academy of Sciences, H-4001 Debrecen, Hungary
INVESTIGATION OF PERIODIC-LAYERED STRUCTURE DURING SOLID STATE REACTIONS OF Zn/CuxTiy SYSTEMS
Yu GONG1,2,3,Yongchong CHEN1(),Dandan LIU1,Yanping ZHANG1,3,Csaba CSERHÁTI4,Attila CSIK5
1 Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Beijing HAWAGA Power Storage Technology Company Ltd., Beijing 100085, China
4 Department of Solid State Physics, University of Debrecen, H-4010 Debrecen, Hungary
5 Institute for Nuclear Research, Hungarian Academy of Sciences, H-4001 Debrecen, Hungary
引用本文:

巩宇, 陈永翀, 刘丹丹, 张艳萍, CSERHÁTICsaba, CSIKAttila. Zn/CuxTiy体系固态反应周期层片型结构研究*[J]. 金属学报, 2016, 52(3): 349-354.
Yu GONG, Yongchong CHEN, Dandan LIU, Yanping ZHANG, Csaba CSERHáTI, Attila CSIK. INVESTIGATION OF PERIODIC-LAYERED STRUCTURE DURING SOLID STATE REACTIONS OF Zn/CuxTiy SYSTEMS[J]. Acta Metall Sin, 2016, 52(3): 349-354.

全文: PDF(8526 KB)   HTML
摘要: 

采用液接法制备Zn/CuxTiy扩散偶, 利用SEM和EDS等对扩散偶在663 K保温不同时间后的反应区进行分析. 结果表明, 除Zn/CuTi2和Zn/CuTi体系以外, 其它5个扩散反应体系能够形成周期层片型结构, 分别是Zn/Cu9Ti, Zn/Cu4Ti, Zn/Cu7Ti3, Zn/Cu3Ti2, Zn/Cu4Ti3. Zn/CuxTiy体系靠近反应区前沿的周期层片结构由单相CuZn2和双相CuZn2+TiZn3交替构成, 而且周期层片型结构的层片厚度与CuxTiy合金的成分有关: CuxTiy合金中Cu原子含量越高, 对应反应区的周期层片厚度越小. 上述实验结果符合扩散应力模型的预测.

关键词 Zn/CuxTiy扩散偶固态反应周期层片结构扩散应力    
Abstract

Periodic-layered structure during solid state reactions is one of the most complicated and interesting structures in the solids, which consists of a periodic sequence of layers that grow perpendicularly to the expected macroscopic diffusion flow. Since the Zn/Fe3Si system was first discovered, much research work has been done on the characterization of the microstructures, the understanding of the formation mechanism and discovery of new systems. However, the exact nature of this phenomenon still remains a controversial topic. In the spirit of thermodynamic instability mechanism, the periodic-layered structure consists of single phase α layer and single phase β layer arrange alternately, while in that of dynamic instability mechanism, which is based on a diffusion-induced stress model, the structure is considered to be composed of regular multilayers of single phase α and two-phase α+β. In the present work, the solid state reactions of various Zn/CuxTiy diffusion systems annealed at 663 K for different times were investigated by using melting contact method, SEM and EDS. The results show that both the polished sections and the in situ fracture surfaces of periodic-layered structure, 5 new systems, i.e. Zn/Cu9Ti, Zn/Cu4Ti, Zn/Cu7Ti3, Zn/Cu3Ti2, Zn/Cu4Ti3 are found to form periodic-layered structure within the diffusion zones. The periodic-layered structure is composed of the CuZn2 single phase and CuZn2+TiZn3 two-phase layers distributing alternately within the reaction area near the CuxTiy side. Furthermore, the thickness of the periodic layers relates to the composition of CuxTiy substrates: the higher the content of Cu atom in the Cu-Ti substrate, the thinner the layer will be. In addition, the adjacent two-phase layers show mated topography and the interface between the periodic layers illustrates typical tear characteristics in mechanics, which are in good accordance with the prediction of the diffusion-induced stresses model. Therefore, the present work provides new and convincing evidence for the dynamic instability mechanism in the interpretation of periodic-layered structures in solids.

Key wordsZn/CuxTiy    diffusion couple    solid reaction    periodic-layered structure    diffusion-induced stress
收稿日期: 2015-05-29     
基金资助:*中国-匈牙利政府间国际合作项目[2013]83-6-13, 国家自然科学基金项目51477170和北京市自然科学基金项目2142034资助
图1  Zn/3Cu-2Ti扩散偶在663 K真空退火24 h后的SEM像
图2  Zn/3Cu-2Ti扩散偶在663 K真空退火24 h后反应区的SEM像
图3  经663 K真空退火24 h后Zn/3Cu-2Ti扩散偶反应区内生成周期成片结构的6种反应体系的SEM像
图4  经663 K真空退火24 h后Zn/4Cu-Ti扩散偶反应区内生成周期成片结构的3种反应体系的SEM像
图5  Zn/3Cu-2Ti扩散偶反应区周期层片型结构经金相处理后的SEM像
图6  Zn/1Cu-1Ti扩散偶在663 K真空退火12 h后反应区内片层结构断面的形貌
图7  Zn/Cu3Ti2体系周期片层型结构形成过程示意图
[1] Osinki K, Vriend A W, Bastin G F, van Loo F J J.Z Metallkde, 1982; 73: 258
[2] van Loo F J J, Osinski K. In: Purdy G R ed., Periodic Structures in Multicomponent Diffusion Couples. Oxford: Pergamon Press, 1990: 109
[3] Rijnders M R, van Loo F J J.Scr Metall Mater, 1995; 32: 1931
[4] He M, Su X P, Yin F C,Wang J H, Li Z.Scr Mater, 2008; 59: 411
[5] Su X P, Liu C, Yin F C,Wang J H.Scr Mater, 2010; 62: 485
[6] Schiepers R C J, van Beek J A, van Loo F J J, De With G.J Eur Ceram Soc, 1993; 11: 211
[7] Dunaev S F, Zver'kov S A.J Less-Common Met, 1989; 153: 143
[8] Rijnders M R, Kodentsov A A, van Beek J A, van Den Akker J, van
[8] Loo F J J.Solid State Ionics, 1997; 95: 51
[9] Chou T C, Joshi A, Wordsworth J.J Mater Res,1991; 6: 796
[10] Rijnders M R, Kodentsov A A, van Beek J A, van den Akker J, van Loo F J J.Solid State Ionics, 1997; 95: 51
[11] Rijnders M R, Kodentsov A A, Cserháti C, van den Akker J, van Loo F J J. Defect Diff Forum, 1996; 129-130: 253
[12] Gutman I, Klinger L, Gotman I, Shapiro M.Scr Mater, 2001; 45: 363
[13] He M, Su X P, Yin F C, Wang J H, Li Z.Scr Mater, 2008; 59: 411
[14] Mazaudier F, Proye C, Hodaj F.J Nucl Mater, 2008; 377: 476
[15] Oberhausera S, Strobla C H, Schreiberb G, Wuestefeldb C H, Rafajab D.Surf Coat Technol, 2010; 204: 2307
[16] Lin S, Tsai M, Tsai P, Hsu B.Sci Reports, 2014; 4: 514
[17] Chen Y C, Zhang X F, Li Y J, Ren Y K.Mater Lett, 2012; 85: 142
[18] Chen Y C, Zhang X F, Han L, Du Z W.Mater Lett, 2012; 76: 151
[19] Kodentsov A A, Rijnders M R, van Loo F J J. Acta Mater, 1998; 46: 6521
[20] Chen Y C, Zhang Y G, Chen C Q.Mater Sci Eng, 2003; A362: 135
[21] Kao C R, Chang Y A.Acta Metall Mater, 1993; 41: 3463
[22] Klinger L, Gotman I, Gutman I.Scr Mater, 2001; 45: 1221
[23] Gutman I, Gotman I, Shapiro M.Acta Mater, 2006; 54: 4677
[24] Gutman I, Klinger L, Gotman I, Shapiro M.Solid State Ionics, 2009; 180: 1350
[25] Chen Y C, Zhang Y G, Chen C Q.Mater Sci Eng, 2004; A368: 1
[26] Chen Y C, Xu J, Fan X H, Zhang X F, Han L, Lin D Y, Li Q H, Uher C.Intermetallics, 2009; 17: 920
[27] Tang R Z, Tian R Z.Binary Alloy Phase Diagams and Crystal Structure of Intermediate Phase. Changsha: Central South University Press, 2009: 1
[27] (唐仁政, 田荣璋. 二元合金相图及中间相晶体结构. 长沙: 中南大学出版社, 2009: 1)
[28] Wu C J, Zhu C L, Su X P, Liu Y, Peng H P, Wang J H.Acta Metall Sin, 2014; 50: 930
[28] (吴长军, 朱晨露, 苏旭平, 刘亚, 彭浩平, 王建华. 金属学报, 2014; 50: 930)
[1] 刘成松,叶飞. 热处理过程中界面固相反应控制锰硅类氧化物变性的机理研究[J]. 金属学报, 2017, 53(1): 10-18.
[2] 吴长军, 朱晨露, 苏旭平, 刘亚, 彭浩平, 王建华. TiCu/Zn界面反应周期层片结构形成的热力学和动力学研究*[J]. 金属学报, 2014, 50(8): 930-936.
[3] 王艳飞, 巩建鸣, 荣冬松, 高峰. 不锈钢低温气体渗碳的C浓度与扩散应力测量与计算*[J]. 金属学报, 2014, 50(4): 409-414.
[4] 陈永翀 . 固体中的扩散应力研究[J]. 金属学报, 2006, 42(3): 225-233 .
[5] 傅晓亮; 李长荣; 李梅; 张维敬 . Ag-Ti二元系在980, 1100和1200℃下的相平衡测量[J]. 金属学报, 2005, 41(7): 691-694 .
[6] 陈永翀; 其鲁; 张永刚; 陈昌麒 . 固态反应周期层片型结构分析[J]. 金属学报, 2005, 41(3): 235-241 .
[7] 丁进军;赵刚;郝士明. Ti-Al-Cr三元系α_2(α)/γ相平衡的研究[J]. 金属学报, 1998, 34(2): 171-175.
[8] 刘兴军;郝士明;孙荣耀. Fe-Mn-Al三元相图1000和1100℃等温截面的研究[J]. 金属学报, 1992, 28(7): 50-54.
[9] 冼爱平;斯重遥. 无压烧结Si_3N_4与表面镀钛膜之间的固态化学反应过程[J]. 金属学报, 1989, 25(6): 143-145.
[10] 邱才安;金展鹏;黄培云. W-Ni-Cu三元系相图1017℃等温截面[J]. 金属学报, 1988, 24(5): 403-406.
[11] 徐乐英;王文斌;庄育智. Cu与NbTi之间扩散反应的研究[J]. 金属学报, 1988, 24(4): 335-341.