Please wait a minute...
金属学报  2016, Vol. 52 Issue (3): 313-319    DOI: 10.11900/0412.1961.2015.00285
  论文 本期目录 | 过刊浏览 |
晶界特征对316不锈钢沿晶应力腐蚀开裂裂纹萌生的影响*
张子龙,夏爽(),曹伟,李慧,周邦新,白琴
上海大学材料科学与工程学院, 上海 200072
EFFECTS OF GRAIN BOUNDARY CHARACTER ON INTERGRANULAR STRESS CORROSION CRACKING INITIATION IN 316 STAINLESS STEEL
Zilong ZHANG,Shuang XIA(),Wei CAO,Hui LI,Bangxin ZHOU,Qin BAI
School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
引用本文:

张子龙, 夏爽, 曹伟, 李慧, 周邦新, 白琴. 晶界特征对316不锈钢沿晶应力腐蚀开裂裂纹萌生的影响*[J]. 金属学报, 2016, 52(3): 313-319.
Zilong ZHANG, Shuang XIA, Wei CAO, Hui LI, Bangxin ZHOU, Qin BAI. EFFECTS OF GRAIN BOUNDARY CHARACTER ON INTERGRANULAR STRESS CORROSION CRACKING INITIATION IN 316 STAINLESS STEEL[J]. Acta Metall Sin, 2016, 52(3): 313-319.

全文: PDF(2912 KB)   HTML
摘要: 

研究了晶界结构特征及晶界两侧晶粒的变形难易程度(Schmid因子)对316不锈钢(316SS)不同晶界萌生应力腐蚀开裂(SCC)裂纹的影响. 通过形变及热处理工艺获得晶粒尺寸较大的样品, 制作成薄样品, 使样品厚度相当于一个晶粒的尺寸. 采用三点弯曲加载方式, 在沸腾的酸化NaCl溶液中进行SCC实验来研究316SS不同晶界萌生SCC裂纹的倾向性. 结果表明, 沿晶型的SCC裂纹在随机晶界处萌生的倾向性最高, 而在Σ3晶界处的SCC裂纹萌生倾向性很低. 分别统计了大量随机晶界和Σ3晶界两侧晶粒的Schmid因子及其差值的绝对值(Δm), 结果表明, 随机晶界数量随Δm值的变化规律不明显, Σ3晶界数量随Δm值增大明显下降; 在0<Δm<0.1范围内, 随机晶界和Σ3晶界萌生SCC裂纹的倾向性都随着Δm的增加而增加.

关键词 316不锈钢应力腐蚀开裂沿晶裂纹萌生Schmid因子    
Abstract

316 stainless steel (316SS) is widely used due to a combination of good mechanical properties and excellent corrosion resistance. However, the intergranular stress corrosion cracking (IGSCC) is a serious problem for 316SS exposed to aggressive environments, which could result in unexpected failures and lead to huge losses. The grain boundary structure and local stress applied on the grain boundary are proved to have significant influence on the initiation of the IGSCC. In this work, thermal-mechanical processing was applied to the 316SS to yield a large-grained sample. The sample plates with a single-grained thickness were subjected to three-points bending SCC tests in an acidified boiling 25%NaCl solution. The result shows that the random grain boundaries (GBs) have the highest propensity to IGSCC initiation, while the Σ3 GBs shows very low tendency to IGSCC initiation. The absolute values of Schmid factor mismatch (Δm) between the grains on both sides of the GBs were analyzed for a large number of GBs. The distribution of the Δm for the Σ3 GBs is obviously different from that of the random GBs. The Δm has significant influence on the IGSCC susceptibility in the range of 0<Δm<0.1. The larger value of the Δm, the higher propensity for the IGSCC initiation at the GBs, for both the random GBs and the Σ3 GBs.

Key words316 stainless steel    stress corrosion cracking    intergranular cracking initiation    Schmid factor
收稿日期: 2015-05-27     
基金资助:*国家重点基础研究发展计划项目2011CB605002和上海市科委重点支撑项目13520500500资助
图1  应力腐蚀开裂(SCC)样品及三点弯曲加载装置的示意图
图2  316不锈钢(316SS)时效处理后的OM像和不同特征晶界的取向成像显微(OIM)图
图3  316SS的晶界特征分布直方图
图4  经SCC实验不同时间后316SS的OM像
图5  经SCC实验13 h后316SS中萌生裂纹区域的SEM和EBSD像
图6  经SCC实验不同时间后316SS表面不同类型晶界萌生裂纹的统计
图7  随机晶界和Σ3晶界数量与晶界两侧晶粒Schmid因子差值绝对值Δm的关系
图8  经SCC 实验不同时间后316SS 中萌生裂纹的随机晶界与晶界两侧晶粒Dm类别的关系
图9  经SCC 实验不同时间后316SS 中萌生裂纹的低SCSL晶界与晶界两侧晶粒Dm类别的关系
[1] Ding X S.Corros Prot, 2002; 23: 441
[1] (丁训慎. 腐蚀与防护, 2002; 23: 441)
[2] Alyousif O M, Nishimura R.Corros Sci, 2007; 49: 3040
[3] West E A, Was G S. J Nucl Mater, 2009; 392: 264
[4] Alexandreanu B, Sencer B H, Thaveeprungsriporn V, Was G S.Acta Mater, 2003; 51: 3831
[5] Gertsman V Y, Bruemmer S M.Acta Mater, 2001; 49: 1589
[6] Gertsman V Y, Janecek M, Tangri K.Acta Mater, 1996; 44: 2869
[7] Watanable T.Res Mech, 1984; 11: 47
[8] Bennett W, Pickering H W.Metall Trans, 1987; 18A: 1117
[9] Kuran M, Erb U, Aust K T.Scr Mater, 2006; 54: 105
[10] Zhou Y, Aust K T, Erb U, Palumbo G.Scr Mater, 2001; 45: 49
[11] Palumbo G, Erb U.MRS Bull, 1999; 24: 2
[12] Shimada M, Kokawa H, Wang Z J, Sato Y S, Karibe I.Acta Mater, 2002; 50: 2331
[13] Michiuchi M, Kokawa H, Wang Z J, Sato Y S, Sakai K.Acta Mater, 2006; 54: 5179
[14] Xia S, Li H, Liu T G, Zhou B X.J Nucl Mater, 2011; 416: 303
[15] Hu C L, Xia S, Li H, Liu T G, Zhou B X, Chen W J, Wang N.Corros Sci, 2011; 53: 1880
[16] Alexandreanu B, Was G S.Scr Mater, 2006; 54: 1047
[17] Gupta G, Was G S.TMS Lett, 2005; 2: 71
[18] Alexandreanu B. Capell B, Was G S.Mater Sci Eng, 2001; A300: 94
[19] Gupta G, Ampornat P, Ren X, Sridharan K, Allen T R, Was G S.J Nucl Mater, 2007; 361: 160
[20] Hu C L, Xia S, Li H, Liu T G, Zhou B X, Chen W J.Acta Metall Sin, 2011; 47: 939
[20] (胡长亮, 夏爽, 李慧, 刘廷光, 周邦新, 陈文觉. 金属学报, 2011; 47: 939)
[21] Xue J.Stress Corrosion Cracking and Environmental Hydrogen Embrittlement: Failure Analysis and Test Methods. Xi'an: Xi'an Jiao Tong University Press, 1991: 5
[21] (薛锦. 应力腐蚀与环境氢脆: 故障分析及测试方法. 西安: 西安交通大学出版社, 1991: 5)
[22] Le Hong S, Amzallag C, Gelpi A.In: Bruemme S, Ford P, Was G eds., Proc 9th Int Sym on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactor, Newport Beach, California: The Minerals, Metals and Material Society, 1999: 115
[23] Rahimi S, Engelberg D L, Duff J A, Marrow T J.J Microsc, 2009; 233: 423
[24] Gioacchino F D, Dafonseca J Q.Exp Mech, 2013; 2: 1
[25] McMurtrey M, Was G S, Patrick L, Farkas D.Mater Sci Eng, 2011; A528: 3730
[26] Fukuya K, Nishioka H, Fujii K, Miura T, Torimaru T.J Nucl Mater, 2011; 417: 958
[27] West E, Was G S. J Nucl Mater, 2011; 408: 142
[28] Stratulat A, Jonathan A D, Marrow T J.Corros Sci, 2014; 85: 428
[29] Ma C, Peng Q J, Han E-H, Ke W.J Chin Soc Corros Prot, 2014; 34: 37
[29] (马成, 彭群家, 韩恩厚, 柯伟. 中国腐蚀与防护学报, 2014; 34: 37)
[30] Palumbo G, Aust KT, Lehockey E M, Erb U, Lin P.Scr Mater, 1998; 38: 1685
[31] Mahajan S, Pande C S, Imam M A, Rath B B.Acta Mater, 1997; 45: 2633
[32] Hahn T, Klapper H.Twinning of Crystals. Berlin: Springer Netherlands, 2006: 393
[33] Hu G X, Cai X, Rong Y H.Fundamental of Materials Science. Shanghai: Shanghai Jiao Tong University Press, 2010: 175
[33] (胡庚祥, 蔡珣, 戎咏华. 材料科学基础. 上海: 上海交通大学出版社, 2010: 175)
[1] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[2] 骆文泽, 胡龙, 邓德安. SUS316不锈钢马鞍形管-管接头的残余应力数值模拟及高效计算方法开发[J]. 金属学报, 2022, 58(10): 1334-1348.
[3] 安旭东, 朱特, 王茜茜, 宋亚敏, 刘进洋, 张鹏, 张钊宽, 万明攀, 曹兴忠. 奥氏体316不锈钢中位错与氢的相互作用机理[J]. 金属学报, 2021, 57(7): 913-920.
[4] 邓平,孙晨,彭群家,韩恩厚,柯伟,焦治杰. 核用304不锈钢辐照促进应力腐蚀开裂研究[J]. 金属学报, 2019, 55(3): 349-361.
[5] 刘晏宇, 毛萍莉, 刘正, 王峰, 王志. Schmid因子的理论计算及其在镁合金高速变形过程中的应用[J]. 金属学报, 2018, 54(6): 950-958.
[6] 余军, 张德平, 潘若生, 董泽华. 井下含硫环空液中P110油管钢应力腐蚀开裂的电化学噪声特征[J]. 金属学报, 2018, 54(10): 1399-1407.
[7] 苑洪钟,刘智勇,李晓刚,杜翠薇. 外加电位对X90钢及其焊缝在近中性土壤模拟溶液中应力腐蚀行为的影响[J]. 金属学报, 2017, 53(7): 797-807.
[8] 闫茂成,杨霜,许进,孙成,吴堂清,于长坤,柯伟. 酸性土壤中破损防腐层下X80管线钢的应力腐蚀行为*[J]. 金属学报, 2016, 52(9): 1133-1141.
[9] 刘智勇,李宗书,湛小琳,皇甫文珠,杜翠薇,李晓刚. X80钢在鹰潭土壤模拟溶液中应力腐蚀裂纹扩展行为机理*[J]. 金属学报, 2016, 52(8): 965-972.
[10] 马宏驰, 杜翠薇, 刘智勇, 郝文魁, 李晓刚, 刘超. E690高强钢在SO2污染海洋大气环境中的应力腐蚀行为研究*[J]. 金属学报, 2016, 52(3): 331-340.
[11] 孙敏,李晓刚,李劲. 新型超高强度钢Cr12Ni4Mo2Co14在酸性环境中的应力腐蚀行为*[J]. 金属学报, 2016, 52(11): 1372-1378.
[12] 康举,李吉超,冯志操,邹贵生,王国庆,吴爱萍. 2219-T8铝合金搅拌摩擦焊接头力学和应力腐蚀性能薄弱区研究*[J]. 金属学报, 2016, 52(1): 60-70.
[13] 石晶,郭振玺,隋曼龄. a-Ti在原位透射电镜拉伸变形过程中位错的滑移系确定*[J]. 金属学报, 2016, 52(1): 71-77.
[14] 郭跃岭, 韩恩厚, 王俭秋. 锻造和热处理对316LN不锈钢在高温碱性溶液中应力腐蚀行为的影响*[J]. 金属学报, 2015, 51(6): 659-667.
[15] 闫茂成, 王俭秋, 韩恩厚, 孙成, 柯伟. 埋地管线阴极保护屏蔽剥离涂层下薄液腐蚀环境特征及演化[J]. 金属学报, 2014, 50(9): 1137-1145.