Please wait a minute...
金属学报  2016, Vol. 52 Issue (5): 519-528    DOI: 10.11900/0412.1961.2015.00391
  论文 本期目录 | 过刊浏览 |
钢包浇注末期汇流旋涡形成机理及影响因素*
唐海燕1,2(),梁永昌2
1 北京科技大学钢铁冶金新技术国家重点实验室, 北京 100083
2 北京科技大学冶金与生态工程学院, 北京 100083
FORMATION MECHANISM AND INFLUENCE FACTORS OF SINK VORTEX DURINGLADLE TEEMING
Haiyan TANG1,2(),Yongchang LIANG2
1 State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
2 School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

唐海燕,梁永昌. 钢包浇注末期汇流旋涡形成机理及影响因素*[J]. 金属学报, 2016, 52(5): 519-528.
Haiyan TANG, Yongchang LIANG. FORMATION MECHANISM AND INFLUENCE FACTORS OF SINK VORTEX DURINGLADLE TEEMING[J]. Acta Metall Sin, 2016, 52(5): 519-528.

全文: PDF(994 KB)   HTML
摘要: 

采用数值模拟并结合实验的方法, 研究了Coriolis力、出水口位置、流体初始切向速度等因素对汇流旋涡产生过程的影响, 此外还研究了具有一定切向运动的流体在浇注过程中切向速度、径向速度的变化规律. 研究表明, 初始流体静止时, Coriolis力是汇流旋涡产生的主要原因, 且汇流旋涡产生的原始驱动力来自于出水口附近处的流体旋量; 初始流体静止时出水口位置对旋涡临界高度的影响不明显, 但是当流体具有一定的初始速度时出水口偏离中心可以使旋涡的产生高度显著降低, 此时流体的切向运动是汇流旋涡产生的根本原因; 流体初始切向运动速度对汇流旋涡的临界高度影响显著, 初始角速度越大, 汇流旋涡产生时刻越早, 临界高度也越高, 因此给予流体一定的静置时间、降低其湍流程度是抑制汇流旋涡卷渣的重要举措; 汇流旋涡的起旋高度HSS与初始角速度ω的关系式为HSS=0.11+2.85ω-4.04ω2+1.95ω3, 空气柱贯通至出水口的高度HCSω的关系式为HCS=0.09+1.49ω-0.79ω2, 拟合度均在0.99以上.

关键词 汇流旋涡钢包浇注临界高度Coriolis力切向速度径向速度VOF模型    
Abstract

To investigate the formation mechanism of sink vortex during ladle teeming, the effects of some factors such as Coriolis force, the position of the ladle shroud and initial tangential velocity of the fluid on the vortex formation process have been studied using numerical simulation combined with experiments. In addition, the evolution tendencies of tangential and radial velocities of the fluid over radial position were studied at certain initial tangential velocity. The results show that as for fully settled fluid, Coriolis force is the major reason for sink vortex formation and the spinor near the shroud is the initial driving force. There is no obvious effect of the ladle shroud position on the critical height of vortex for fully settled fluid, while the critical height of vortex significantly decreases with increasing shroud eccentricity for the fluid with a certain initial velocity, and the tangential motion is the main driving force for vortex formation in this case. The initial tangential velocity affects the critical height significantly. The larger the initial angular velocity is, the earlier vortex occurs and the bigger the critical height of vortex is. As a result, keeping the fluid settled for some time is an effective measure to delay vortex during ladle teeming. The relationship between the start height of vortex (HSS) and initial angular velocity (ω) can be expressed as HSS=0.11+2.85ω-4.04ω2+1.95ω3, and that of the height of air column extending to shroud (HCS) and ω expressed as HCS=0.09+1.49ω-0.79ω2, both of the fitting degrees are higher than 0.99.

Key wordssink vortex    ladle teeming    critical height    Coriolis force    tangential velocity    radial velocity    VOF model
收稿日期: 2015-07-16     
基金资助:* 国家自然科学基金项目51374021, 中央高校基本科研业务费项目06102110, 以及钢铁冶金新技术国家重点实验室自主研发基金项目41603014资助
图1  钢包模型网格划分示意图
图2  实验装置示意图
图3  钢包浇注过程中汇流旋涡各发展阶段示意图
图4  不同出水口直径时大贯通吸气涡临界高度模拟值和实验值对比
图5  施加Coriolis力前后汇流旋涡临界高度对比
图6  施加Coriolis力前后液位降至82.0 mm时80.0 mm处截面的速度矢量图对比
图7  液面降低至350.0 mm时不同高度截面上的速度矢量图
图8  流体不同初始速度下偏心率对旋涡临界高度的影响
图9  初始切向速度对汇流旋涡临界高度的影响
图10  不同ω下各断面切向速度沿半径方向的变化
图11  ω=0 和 0.2 rad/s下液面降低到不同高度时径向速度沿半径方向的变化
[1] Huang Y, Ye S F, Tao Y P, Li M M, Huang Z M.J Iron Steel Res, 1995; 7(6): 9
[1] (黄晔, 叶树峰, 陶玉平, 李美明, 黄泽民. 钢铁研究学报, 1995; 7(6) : 9)
[2] Lin R, Yan Z G, Yu J K. J Northeastern Univ (Nat Sci), 2010; 31: 1287
[2] (蔺瑞, 颜正国, 于景坤. 东北大学学报(自然科学版), 2010; 31: 1287)
[3] Zhou L, Cao C H, Dai W, He X.Steelmaking, 2012; 28(2): 56
[3] (周俐, 曹成虎, 戴维, 何西. 炼钢, 2012; 28(2) : 56)
[4] Lin R, Yan Z G, Liu T, Liu J Z, Yu J K.J Mater Metall, 2011; 10: 172
[4] (蔺瑞, 颜正国, 刘涛, 刘家占, 于景坤. 材料与冶金学报, 2011; 10: 172)
[5] Mazzaferro G M, Piva M, Ferro S P, Bissio P, Iglesias M, Calvo A, Goldschmit M B.Ironmaking Steelmaking, 2004; 31: 1
[6] Lin R, Yan Z G, Liu T, Yu J K.Chin J Process Eng, 2010; 10: 655
[6] (蔺瑞, 颜正国, 刘涛, 于景坤. 过程工程学报, 2010; 10: 655)
[7] Huang Y, Ye S F, Su T S, Li M M.Jiangxi Metall, 1999; 19(6) : 1
[7] (黄晔, 叶树峰, 苏天森, 李美明. 江西冶金, 1999; 19(6) : 1)
[8] Davila O, Morales R D, Garcia D L.Metall Mater Trans, 2006; 37B: 71
[9] Jun W S, Joonpyo P, Hoyoung K, Zin H L.ISIJ Int, 2001; 41: 689
[10] Sankaranarayanan R, Grthrie R I L.Ironmaking Steelmaking, 2002; 29: 147
[11] Kojola N, Takagi S, Yokoya S, Jonsson P.ISIJ Int, 2009; 49: 1
[12] Rodolfo D M, Omar D M, Ismael C, Ken M H.ISIJ Int, 2013; 53: 782
[13] Wang J, Zhou S X, Chen W Z, Zhang S L.Foundry Technol, 2012; 33: 1194
[13] (王建, 周少雄, 陈文智, 张淑兰. 铸造技术, 2012; 33: 1194)
[14] Koria S C, Kanth U.Steel Res, 1994; 5: 1
[15] Sucker D, Reinecke J.In Ironmaking Conference eds., Proc 5th Int Iron and Steel Congress, Washington: Iron and Steel Society of the American Institute of Mining, Metallurgical and Petroleum Engineers (AIME), 1986: 331
[16] Piva M, Iglesias M, Bissio P, Calvo A.Physica, 2003; 329A: 1
[17] Kuwana K, Hassan M I, Singh P K, Saito K, Nakagawa J.Mater Manuf Processes, 2008; 23: 407
[18] Shi X G. J Hydrodyn, 1992; 7(1)A: 103
[18] (是勋刚. 水动力学研究与进展, 1992; 7(1)A: 103)
[19] Zhang J S, Yang S F, Li J S, Yang W L, Wang Y, Guo X C.ISIJ Int, 2015; 55: 1684
[20] Shih T H, Liou W W, Shabbir A, Yang Z, Zhu J.Comput Fluids, 1995; 24: 227
[21] Tang H Y, Li J S, Ding X M, Tang W D.J Univ Sci Technol Beijing, 2011; 33(suppl.1): 34
[21] (唐海燕, 李京社, 丁小明, 唐文聃, 北京科技大学学报, 2011; 33(增刊1): 34)
[22] Sucker D, Reinecke J, Hage Jewainski H.Stahl Eisen, 1985; 150: 765
[23] Tang H Y, Zhang T B, Li J S, Chen Y F. Mater Processing Fundamentals.Warrendale, Pennsylvania: Miner Met Mater Soc, 2013: 281
[24] Li G Y.Hydrau Technol, 2007; 38: 1409
[24] (李国英. 水力学报, 2007; 38: 1409)
No related articles found!