Please wait a minute...
金属学报  2016, Vol. 52 Issue (4): 410-418    DOI: 10.11900/0412.1961.2015.00482
  论文 本期目录 | 过刊浏览 |
Nb-Mo微合金高强钢强化机理及其纳米级碳化物析出行为*
张正延1,2,孙新军1(),雍岐龙1,2,李昭东1,王振强3,王国栋2
1 钢铁研究总院工程用钢研究所, 北京 100081
2 东北大学轧制技术及连轧自动化国家重点实验室, 沈阳 110819
3 哈尔滨工程大学材料与化学工程学院, 哈尔滨 150001
PRECIPITATION BEHAVIOR OF NANOMETER-SIZED CARBIDES IN Nb-Mo MICROALLOYED HIGH STRENGH STEEL AND ITS STRENGTHENING MECHANISM
Zhengyan ZHANG1,2,Xinjun SUN1(),Qilong YONG1,2,Zhaodong LI1,Zhenqiang WANG3,Guodong WANG2
1 Department of Structural Steels, Central Iron and Steel Research Institute, Beijing 100081, China
2 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
3 College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
引用本文:

张正延,孙新军,雍岐龙,李昭东,王振强,王国栋. Nb-Mo微合金高强钢强化机理及其纳米级碳化物析出行为*[J]. 金属学报, 2016, 52(4): 410-418.
Zhengyan ZHANG, Xinjun SUN, Qilong YONG, Zhaodong LI, Zhenqiang WANG, Guodong WANG. PRECIPITATION BEHAVIOR OF NANOMETER-SIZED CARBIDES IN Nb-Mo MICROALLOYED HIGH STRENGH STEEL AND ITS STRENGTHENING MECHANISM[J]. Acta Metall Sin, 2016, 52(4): 410-418.

全文: PDF(1235 KB)   HTML
  
摘要: 

采用SEM, EBSD, HRTEM和物理化学相分析等技术分别对0.1%Nb和0.1%Nb-0.19%Mo微合金低碳热轧钢进行了微观组织形貌、钢中析出相及强化机理的观测和分析. 结果表明, 与Nb钢相比, Nb-Mo钢的组织较为细小, 组织中小角度晶界密度也较高, 且Mo的添加使得Nb的析出率升高, 尺寸在10 nm以下的纳米级MC型析出相(Nb, Mo)C含量较高, 这种纳米级析出相(Nb, Mo)C具有较低的熟化速率, 不易粗化, 因此具有较高的沉淀强化增量, 这也是Nb-Mo钢强度高于Nb钢的主要原因.

关键词 Nb-Mo微合金化强化机理纳米级碳化物析出    
Abstract

Recently, increasing attention has been focused on the high strength low alloy (HSLA) steels mircoalloyed with multiple miroalloying elements, such as Nb-Ti, Nb-V and Ti-Mo, which can form synthetic carbide in steel, such as (Nb, Ti)C, (Nb, V)C and (Ti, Mo)C. Compared with the simplex carbide, such as NbC, TiC, those synthetic carbides with nanometer size exhibiting a superior thermal stability to exert their powerful influence mainly through their precipitation hardening in ferrite. It is reported that the precipitation hardening of approximate 300 MPa which can be obtained in Ti-Mo-bearing steel was developed by JFE steel, attributing to the synthetic (Ti, Mo)C particle precipitated in ferrite. However, as common microalloying elements, Nb and Mo are added synchronously in steel. The strengthening mechanism of Nb-Mo mircoalloyed as-rolled steel and the role of the carbide precipitated in Nb-Mo mircoalloyed as-rolled steel are rarely reported. Therefore, in the present study, the strengthening mechanism, microstructure and the precipitate characteristics of Nb and Nb-Mo microalloyed steels produced by thermo mechanical control process (TMCP) were comparatively investigated by means of SEM, EBSD, HRTEM and physical and chemical phase analysis, in order to systematically study the synergistic effect of Nb-Mo addition on the strength of as-rolled steel. The results shows that the microstructure is finer and the density of low-angle grain boundaries is higher in Nb-Mo microalloyed steel compared with that of in the Nb microalloyed steel. What's more, the Mo addition could increase the precipitation ratio of Nb, and the amount of the MC-type carbide with nanometer size in Nb-Mo microalloyed steel is evidently larger than that of in Nb microalloyed steel. Those MC-type carbide were identified as synthetic carbide (Nb, Mo)C, exhibiting low coarsening rate than that of NbC precipitated in Nb microalloyed steel, which thus contributed to a higher precipitation hardening. This is main reason of the difference in strength between Nb and Nb-Mo microalloyed steel.

Key wordsNb-Mo microalloyed    strength mechanism    nanometer-sized carbide    precipitation
收稿日期: 2015-09-15     
基金资助:* 国家重点基础研究发展计划项目2015CB654803和国家高技术研究发展计划项目2015AA034302资助
Steel C Mn P S Si Al Mo Ti Nb B Fe
Nb 0.036 1.35 0.0034 0.0057 0.024 0.012 - 0.010 0.1 0.0012 Bal.
Nb-Mo 0.042 1.38 0.0040 0.0060 0.016 0.014 0.19 0.015 0.1 0.0010 Bal.
表1  Nb和Nb-Mo微合金钢的化学成分
图1  Nb和Nb-Mo微合金钢室温拉伸的应力-应变曲线
Steel σb / MPa σ0.2 / MPa δ / % Yield ratio
Nb 679 630 23 0.92
Nb-Mo 739 699 21 0.94
表2  Nb和Nb-Mo微合金钢的室温横向拉伸性能
图2  Nb和Nb-Mo微合金钢的SEM像
图3  Nb和Nb-Mo微合金钢的EBSD晶界分布图及晶界密度对比图
图4  奥氏体中析出的MC型粒子的HRTEM像及其与铁素体的位向关系
图5  Nb和Nb-Mo微合金钢中在铁素体中析出的纳米级析出相形貌的TEM像及其对应粒子的EDS
图6  Nb和Nb-Mo微合金钢中萃取的析出相的XRD谱
Steel N3C (N=Fe, Mn, Mo) MC (M=Nb, Ti, Mo)
Fe Mn Mo C* Nb Ti Mo C*
Nb 0.177 0.032 - 0.015 0.076 0.0095 - 0.0098
Nb-Mo 0.168 0.022 0.014 0.014 0.078 0.0150 0.028 0.0133
表3  Nb和Nb-Mo微合金钢析出相中各元素的含量
图7  Nb和Nb-Mo微合金钢中MC型析出相的粒度分布
d / nm fm / % fV / % σp / MPa
Nb Nb-Mo Nb Nb-Mo Nb Nb-Mo
1~5 0.005246 0.04236 0.005234 0.04230 43.0 122.1
5~10 0.006192 0.00996 0.006178 0.00994 27.3 34.6
10~18 0.007826 0.01560 0.007808 0.01560 20.0 28.2
18~36 0.014448 0.00492 0.014415 0.00491 16.7 9.8
36~60 0.011008 0.00948 0.010983 0.00946 9.3 8.7
表4  Nb和Nb-Mo微合金钢中各尺寸范围的析出相的体积分数及所产生的沉淀强化增量
图8  Nb和Nb-Mo微合金钢的强化方式叠加分析
图9  Nb和Nb-Mo微合金钢中的析出相在铁素体中的熟化速率随温度的变化曲线
[1] Weng Y Q.Ultra-Fine Grained Steels. Beijing: Metallurgical Industry Press, 2008: 20
[1] (翁宇庆. 超细晶钢. 北京:冶金工业出版社, 2008: 20)
[2] Miao C L, Shang C J, Zhang G D, Subramanian S V.Mater Sci Eng, 2010; A527: 4985
[3] Wang C Y, Shi J, Cao W Q, Hui W J, Wang M Q, Dong H.Acta Metall Sin, 2011; 47: 720
[3] (王存宇, 时捷, 曹文全, 惠卫军, 王毛球, 董瀚. 金属学报, 2011; 47: 720)
[4] Wan R C, Sun F, Zhang L T, Shan A D.Mater Des, 2012; 35: 335
[5] Yong Q L, Ma M T, Wu B R.Microalloyed Steel-Physical and Mechanical Metallurgy. Beijing: China Machine Press, 1989: 22
[5] (雍岐龙, 马鸣图, 吴宝榕. 微合金钢-物理和力学冶金. 北京: 机械工业出版社, 1989: 22)
[6] De Ardo A J. In: Fu J Y, Wang W Z eds., Niobium Science & Technology. Beijing: Metallurgical Industry Press, 2003: 271
[6] (De Ardo A J. 见: 付俊岩, 王伟哲主编, 铌科学与技术. 北京: 冶金工业出版社, 2003: 271)
[7] Liu Q D, Liu W Q, Wang Z M, Zhou B X.Acta Metall Sin, 2008; 44: 786
[7] (刘庆冬, 刘文庆, 王泽民, 周邦新. 金属学报, 2008; 44: 786)
[8] Liu Q D, Liu W Q, Peng J C.Trans Mater Heat Treat, 2008; 29(4): 118
[8] (刘庆冬, 刘文庆, 彭剑超. 材料热处理学报, 2008; 29(4): 118)
[9] Cao S M, Li C, Liu W Q.Trans Mater Heat Treat, 2013; 34(2): 47
[9] (曹双梅, 李聪, 刘文庆. 材料热处理学报, 2013; 34(2): 47)
[10] Chen J, Lü M Y, Tang S, Liu Z Y, Wang G D.Acta Metall Sin, 2014; 50: 524
[10] (陈俊, 吕梦阳, 唐帅, 刘振宇, 王国栋. 金属学报, 2014; 50: 524)
[11] Li X L, Wang Z D.Acta Metall Sin, 2015; 51: 417
[11] (李小琳, 王昭东. 金属学报, 2015; 51: 417)
[12] Funakawa Y, Shiozaki T, Tomita K, Yamamoto T, Maeda E.ISIJ Int, 2004; 44: 1945
[13] Wang Z Q.PhD Dissertation, Tsinghua University, Beijing, 2013
[13] (王振强. 清华大学博士学位论文, 北京, 2013)
[14] Duan X G, Cai Q W, Wu H B.Acta Metall Sin, 2011; 47: 251
[14] (段修刚, 蔡庆伍, 武会宾. 金属学报, 2011; 47: 251)
[15] Jang J H, Lee C H, Heo Y U, Suh D W.Acta Mater, 2012; 60: 208
[16] Kim Y W, Kim J H, Hong S G, Lee C S.Mater Sci Eng, 2014; A605: 244
[17] Kim Y W, Song S W, Seo S J, Hong S G, Lee C S.Mater Sci Eng, 2013; A565: 430
[18] Jang J H, Lee C H, Han H N, Bhadeshia H K D H, Suh D W.Mater Sci Technol, 2013; 29: 1074
[19] Park D B, Huh M Y, Shim J H, Suh J Y, Lee K H, Jung W S.Mater Sci Eng, 2013; A560: 528
[20] Cao J C, Yong Q L, Liu Q Y, Sun X J.J Mater Sci, 2007; 42: 10080
[21] Pan J S, Tong J M, Tian M B.Fundamentals of Material Science. Beijing: Tsinghua University Press, 2011: 660
[21] (潘金生, 仝健民, 田民波. 材料科学基础. 北京: 清华大学出版社, 2011: 660)
[22] Zhang Z Y, Sun X J, Li Z D, Wang X J, Yong Q L, Wang G D.Chin J Mater Res, 2015; 29: 269
[22] (张正延, 孙新军, 李昭东, 王小江, 雍岐龙, 王国栋. 材料研究学报, 2015; 29: 269)
[23] Yong Q L.Secondary Phase in Steels. Beijing: Metallurgical Industry Press, 2006: 361
[23] (雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 361)
[24] Zhang Z Y, Li Z D, Yong Q L, Sun X J, Wang Z Q, Wang G D.Acta Metall Sin, 2015; 51: 315
[24] (张正延, 李昭东, 雍岐龙, 孙新军, 王振强, 王国栋. 金属学报, 2015; 51: 315)
[25] Wan R C.PhD Dissertation, Shanghai Jiao Tong University, 2012
[25] (万荣春. 上海交通大学博士学位论文, 2012)
[26] Wan R C, Sun F, Zhang L T, Shan A D.Mater Des, 2012; 36: 227
[27] Zhang Z Y, Sun X J, Wang Z Q, Li Z D, Yong Q L, Wang G D.Mater Lett, 2015; 159: 249
[28] Cao Y B, Xiao F R, Qiao G Y, Huang C J, Zhang X B, Wu Z X, Liao B.Mater Sci Eng, 2012; A552: 502
[1] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[2] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[3] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[4] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[5] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[6] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[7] 巩向鹏, 伍翠兰, 罗世芳, 沈若涵, 鄢俊. 自然时效对Al-2.95Cu-1.55Li-0.57Mg-0.18Zr合金160℃人工时效的影响[J]. 金属学报, 2023, 59(11): 1428-1438.
[8] 李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.
[9] 刘续希, 柳文波, 李博岩, 贺新福, 杨朝曦, 恽迪. 辐照条件下Fe-Cu合金中富Cu析出相的临界形核尺寸和最小能量路径的弦方法计算[J]. 金属学报, 2022, 58(7): 943-955.
[10] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[11] 袁波, 郭明星, 韩少杰, 张济山, 庄林忠. 添加3%ZnAl-Mg-Si-Cu合金非等温时效析出行为的影响[J]. 金属学报, 2022, 58(3): 345-354.
[12] 唐帅, 蓝慧芳, 段磊, 金剑锋, 李建平, 刘振宇, 王国栋. 铁素体区等温过程中Ti-Mo-Cu微合金钢中的共析出行为[J]. 金属学报, 2022, 58(3): 355-364.
[13] 韩汝洋, 杨庚蔚, 孙新军, 赵刚, 梁小凯, 朱晓翔. 钒微合金化中锰马氏体耐磨钢奥氏体晶粒长大行为[J]. 金属学报, 2022, 58(12): 1589-1599.
[14] 孙士杰, 田艳中, 张哲峰. 析出强化Fe53Mn15Ni15Cr10Al4Ti2C1 高熵合金强韧化机制[J]. 金属学报, 2022, 58(1): 54-66.
[15] 薛克敏, 盛杰, 严思梁, 田文春, 李萍. 模压变形中国低活化马氏体钢沉淀相对其力学性能的影响[J]. 金属学报, 2021, 57(7): 903-912.