Please wait a minute...
金属学报  2016, Vol. 52 Issue (5): 549-560    DOI: 10.11900/0412.1961.2015.00408
  论文 本期目录 | 过刊浏览 |
第二、三代镍基单晶高温合金含Hf过渡液相连接*
郁峥嵘1,丁贤飞2,曹腊梅3,郑运荣1,冯强1,4()
1 北京科技大学新金属材料国家重点实验室, 北京100083
2 北京科技大学国家材料服役安全科学中心, 北京 100083
3 北京航空材料研究院先进高温结构材料重点实验室, 北京100095
4 北京科技大学高端金属材料特种熔炼与制备北京市重点实验室, 北京 100083
TRANSIENT LIQUID PHASE BONDING OF SECOND AND THIRD GERNERATION Ni-BASED SINGLE CRYSTAL SUPERALLOY WITH Hf-CONTAININGINTERLAYER ALLOY
Zhengrong YU1,Xianfei DING2,Lamei CAO3,Yunrong ZHENG1,Qiang FENG1,4()
1 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
2 National Centre for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China
3 Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095, China
4 Beijing Key Laboratory of Special Melting and Reparation of High-End Metal Materials, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

郁峥嵘,丁贤飞,曹腊梅,郑运荣,冯强. 第二、三代镍基单晶高温合金含Hf过渡液相连接*[J]. 金属学报, 2016, 52(5): 549-560.
Zhengrong YU, Xianfei DING, Lamei CAO, Yunrong ZHENG, Qiang FENG. TRANSIENT LIQUID PHASE BONDING OF SECOND AND THIRD GERNERATION Ni-BASED SINGLE CRYSTAL SUPERALLOY WITH Hf-CONTAININGINTERLAYER ALLOY[J]. Acta Metall Sin, 2016, 52(5): 549-560.

全文: PDF(2138 KB)   HTML
摘要: 

采用无B的含Hf镍基合金作为中间层合金, 分别对含Re的第二代镍基单晶高温合金 (CMSX-4, 铸态) 和第三代镍基单晶高温合金(SXG3, 完全热处理态)进行过渡液相(TLP)连接, 并分析了连接区的显微组织演变以及降熔元素分布, 测试了连接区的显微硬度. 结果表明, 在1290 ℃真空保温24 h后, CMSX-4和SXG3合金的TLP连接均已完成, 2种合金的TLP连接过程也均符合经典模型. 以含Hf的镍基合金作为中间层合金时, 在连接区内没有出现扩散影响区. CMSX-4合金的固溶处理可在TLP连接过程中同步完成, 缩短了热处理工艺. SXG3合金中的C与Hf结合在液相中形成固相HfC, 降低熔体中Hf浓度, 缩短了等温凝固阶段的时间. 研究表明, 通过含Hf的TLP连接可以研究小角度晶界的界面稳定性, 其中在1150 ℃保温热处理后, SXG3合金小角度晶界出现不连续脱溶转变的临界区间在10°~17°之间.

关键词 镍基单晶高温合金TLP连接含Hf中间层合金显微组织    
Abstract

A Hf-containing Ni-based alloy was used as the interlayer alloy of TLP bonding for the 2nd (CMSX-4, as-cast condition) and 3rd (SXG3, standard heat treatment condition) generation Ni-based single crystal superalloys containing Re in this work, and the microstructure, composition and micro-hardness of bonding zone were characterized. The results show that the TLP bonding of CMSX-4 and SXG3 alloy were completed after bonded at 1290 ℃ in vacuum for 24 h. These TLP bonding process of CMSX-4 and SXG3 alloys can be explained well using classical TLP model. The diffusion affected zone was not observed during the TLP bonding process. In addition, the heat treatment process of CMSX-4 is shortened by 24 h resulted from the solid solution heat treatment of CMSX-4 alloy has been completed after the process of TLP bonding. The isothermal solidification stage of SXG3 alloy was also accelerated due to the precipitation of HfC at the bonding temperature, resulting in the reduced Hf concentration of Hf in the melting zone. This work also indicates that the interfacial stability of low angle grain boundaries can be investigated by the TLP bonding. The critical misorientation value for discontinuous precipitation of SXG3 alloy along TLP bonding grain boundaries by Hf-containing interlayer alloy was in between 10° and 17° after heat treatment at 1150 ℃.

Key wordsNi-based single crystal superalloy    TLP bonding    Hf-containing interlayer alloy    microstructure
收稿日期: 2015-07-23     
基金资助:* 国家自然科学基金项目 51071016, 国家高技术研究发展计划项目2012AA03A511和教育部技术支撑重点项目625010337资助
Alloy Cr Co Mo W Ta Re Al Ti Hf C Ni
CMSX-4 6.5 9.0 0.6 6.0 6.5 3.0 5.6 1.0 0.10 - Bal.
SXG3 4.0 12.0 2.0 6.0 7.0 5.0 5.0 - 0.15 0.02 Bal.
Interlayer 4.5 18.6 - 4.7 - - - - 25.60 - Bal.
表1  合金的名义成分
图1  过渡液相(TLP)连接的试样装配示意图
图2  CMSX-4合金经1290 ℃保温不同时间后基体合金和TLP连接区的SEM像
图3  CMSX-4合金经1290 ℃保温后, MZ平均宽度和Ni5Hf相在TLP的MZ中相含量与保温时间的关系
Phase Cr Co W Ta Al Ti Hf Ni
Ni5Hf 2.5 7.7 - - 1.0 - 40.3 48.5
γ' phase in eutectic 4.9 9.5 4.9 8.5 6.0 2.0 10.8 53.3
表2  CMSX-4合金经1290 ℃保温15 min后TLP连接MZ中Ni5Hf相和共晶团边缘γ'相的平均成分
图4  CMSX-4合金经1290 ℃保温15 min后TLP连接区的SEM像及γ+γ'共晶团中Hf元素分布
图5  CMSX-4合金经1290 ℃保温6和24 h后TLP连接区及附近基体合金中Hf元素的浓度分布
图6  CMSX-4合金经1290 ℃保温24 h后垂直于TLP连接界面的纳米压痕路径区域硬度和弹性模量
图7  SXG3合金经1290 ℃保温不同时间后TLP连接区的SEM像
图8  SXG3合金经1290 ℃保温6 h并淬火后TLP连接区的SEM像
图9  经TLP连接后SXG3合金的OM像及该连接试样经1150 ℃保温热处理5和25 h后的SEM像
[1] Pollock T M, Tin S.J Propul Power, 2006; 22: 361
[2] Rolls-Royce. The Jet Engine.Derby, United Kingdom: Rolls-Royce Plc, 1986: 45
[3] Kercher D M.US Pat, US3533712 A, 1970
[4] Godfrey D G, Morris M C, Menon M.US Pat, US20130195673 A1, 2013
[5] Finn S R, Schilling J C, Lin W W L, Dindar M, Tyler R P.US Pat, US6607358 B2, 2002
[6] Qu W Q, Zhang Y H.Weld Technol, 2002; 31(3): 4
[6] (曲文卿, 张彦华. 焊接技术, 2002; 31(3): 4)
[7] Duvall D S, Owczarski W A, Paulonis D F.Weld J, 1974; 53: 203
[8] Cook G O, Sorensen C D.J Mater Sci, 2011; 46: 5305
[9] Tokoro K, Wikstrom N P, Ojo O A, Chaturvedi M C.Mater Sci Eng, 2008; A477: 311
[10] Bakhtiari R, Ekrami A, Khan T.Mater Sci Eng, 2012; A546: 291
[11] Li X H, Ye L, Zhong Q P, Xiong H P.J Aeronaut Mater, 2011; 31(6): 1
[11] (李晓红, 叶雷, 钟群鹏, 熊华平. 航空材料学报, 2011; 31(6): 1)
[12] Lang B, Hou J B, Wu S.J Mater Eng, 2010; (10): 32
[12] (郎波, 侯金保, 吴松. 材料工程, 2010; (10): 32)
[13] Li W, Jin T, Hu Z Q. Acta Metall Sin, 2008; 44: 1474
[13] (李文, 金涛, 胡壮麒. 金属学报, 2008; 44: 1474)
[14] Liu J D, Jin T, Zhao N R, Wang J H, Liu J L, Sun X F.Rare Met Mater Eng, 2007; 36: 332
[14] (刘纪德, 金涛, 赵乃仁, 王金辉, 刘金来, 孙晓峰. 稀有金属材料与工程, 2007; 36: 332)
[15] Jalilian F, Jahazi M, Drew R.Mater Sci Eng, 2006; A423: 269
[16] Pouranvari M, Ekrami A, Kokabi A H.J Alloys Compd, 2008; 461: 641
[17] Pouranvari M, Ekrami A, Kokabi A H.J Alloys Compd, 2009; 469: 270
[18] Pouranvari M, Ekrami A, Kokabi A H.Mater Sci Eng, 2013; A568: 76
[19] Pouranvari M, Ekrami A, Kokabi A H.J Alloys Compd, 2013; 563: 143
[20] Zheng Y R, Ruan Z C.Acta Metall Sin, 1990; 26: B119
[20] (郑运荣, 阮中慈. 金属学报, 1990; 26: B119)
[21] Neumeier S, Dinkel M, Pyczak F, G?ken M.Mater Sci Eng, 2011;A528: 815
[22] Dinkel M K, Heinz P, Pyczak F, Volek A, Ott M, Affeldt E, Singer R F.In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S R eds., Proc Int Symp on Superalloys, Warrendale, PA, USA: TMS, 2008: 211
[23] Ruan Z C, Wang S C, Zheng Y R.Scr Mater, 1996; 34: 163
[24] Kvasnitskij V V, Kostin A M, Vorob'ev A N, Kulik S G, Nikolaenko V P.Avtom Svarka, 1999; 11: 22
[25] Mao W, Li X H, Zhou Y, Ye L.Trans China Weld Inst, 2011; 32(4): 91
[25] (毛唯, 李晓红, 周媛, 叶雷. 焊接学报, 2011; 32(4): 91)
[26] Cao J, Song X G, Zheng Z J, Feng J C.Trans China Weld Inst, 2011; 32(7): 13
[26] (曹健, 宋晓国, 郑祖金, 冯吉才. 焊接学报, 2011; 32(7): 13)
[27] Pollock T M.Mater Sci Eng, 1995; B32: 255
[28] Cao L M, Li X H, Chen J Y, Xue M, Zhang Y.J Mater Eng, 2011; (10): 7
[28] (曹腊梅, 李相辉, 陈晶阳, 薛明, 张勇. 材料工程, 2011; (10): 7)
[29] Chen J Y, Cao L M, Xue M, Liu L J.Rare Met, 2014; 33(2): 144
[30] Zheng Y R, Cai Y L, Ruan Z C, Ma S W.J Aeronaut Mater, 2006; 26(3): 25
[30] (郑运荣, 蔡玉林, 阮中慈, 马书伟. 航空材料学报, 2006; 26(3): 25)
[31] Ma S W, Zheng Y R.Chin J Mater Res, 2009; 10: 149
[31] (马书伟, 郑运荣. 材料研究学报, 2009; 10: 149)
[32] Wilson B, Hickman J, Fuchs G.JOM, 2003; 55(3): 35
[33] Zhou Y, Gale W, North T.Int Mater Rev, 1995; 40: 181
[34] Steuer S, Singer R.Metall Mater Trans, 2013; 44A: 2226
[35] Li T, Wang Q Y, Wang A Q, Wen Z X, Yue Z F.Key Eng Mater, 2005; 297: 1489
[36] Cranck J.The Mathematics of Diffusion. 2nd Ed., Oxford: Clarendon Press, 1975: 71
[37] Sheng N, Liu J, Jin T, Sun X F, Hu Z Q.Metall Mater Trans, 2013; 44A: 1793
[38] Karunaratne M, Reed R.Acta Mater, 2003; 51: 2905
[39] Bergner D.Cryst Res Technol, 1972; 7: 651
[40] Liu J D, Jin T, Zhao N R, Wang Z H, Sun X F, Guan H R, Hu Z Q.Mater Charact, 2011; 62: 545
[41] Wikstrom N, Ojo O, Chaturvedi M.Mater Sci Eng, 2006; A417: 299
[42] Lander J, Kern H, Beach A.J Appl Phys, 1952; 23: 1305
[43] Bridges P J, White C H, Durber G L R. The Nimonic Alloys. Bristol, Great Britain: Edward Arnold Ltd, 1974: 33
[44] Walston W S, Schaeffer J C, Murphy W H.In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Proc Int Symp on Superalloys, Warrendale, PA, USA: TMS, 1996: 9
[45] Yang C C, Rollett A, Mullins W.Scr Mater, 2001; 44: 2735
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[4] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[5] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[6] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[7] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[8] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[9] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[10] 张子轩, 于金江, 刘金来. 镍基单晶高温合金DD432的持久性能各向异性[J]. 金属学报, 2023, 59(12): 1559-1567.
[11] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[12] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[13] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[14] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.
[15] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.