Please wait a minute...
金属学报  2015, Vol. 51 Issue (10): 1261-1272    DOI: 10.11900/0412.1961.2015.00363
  本期目录 | 过刊浏览 |
Hf对第二代镍基单晶高温合金DD11高温低应力持久性能的影响
赵云松1,2,张剑2,骆宇时2,唐定中2,冯强1,3()
2 北京航空材料研究院先进高温结构材料重点实验室, 北京 100095
3 高端金属材料特种熔炼工艺与制备北京市重点实验室, 北京 100083
EFFECTS OF Hf ON HIGH TEMPERATURE LOW STRESS RUPTURE PROPERTIES OF A SECOND GENERATION Ni-BASED SINGLE CRYSTAL SUPERALLOY DD11
Yunsong ZHAO1,2,Jian ZHANG2,Yushi LUO2,Dingzhong TANG2,Qiang FENG1,3()
1 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
2 Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095
3 Beijing Key Laboratory of Special Melting and Reparation of High-end Metal Materials, Beijing 100083
引用本文:

赵云松,张剑,骆宇时,唐定中,冯强. Hf对第二代镍基单晶高温合金DD11高温低应力持久性能的影响[J]. 金属学报, 2015, 51(10): 1261-1272.
Yunsong ZHAO, Jian ZHANG, Yushi LUO, Dingzhong TANG, Qiang FENG. EFFECTS OF Hf ON HIGH TEMPERATURE LOW STRESS RUPTURE PROPERTIES OF A SECOND GENERATION Ni-BASED SINGLE CRYSTAL SUPERALLOY DD11[J]. Acta Metall Sin, 2015, 51(10): 1261-1272.

全文: PDF(10277 KB)   HTML
摘要: 

通过对4种不同Hf含量(0~0.80%, 质量分数, 下同)的第二代镍基单晶高温合金DD11铸态及热处理态组织定量表征与1100 ℃, 140 MPa持久性能测试, 研究了Hf对相转变温度、(γ+γ’)共晶组织、碳化物、微孔、凝固偏析、合金元素成分分配比及持久性能的影响. 结果表明, 添加Hf显著降低合金的固/液相线, 降低微孔含量, 提高铸态共晶组织体积分数、MC型碳化物含量以及凝固偏析程度. 合金热处理后, 随着Hf含量提高, 固溶微孔含量显著降低、残余共晶和碳化物含量显著增加. 添加Hf通过提高Re, Mo和Cr的成分分配比, 增加γ/γ’错配度, 减小γ/γ’界面位错间距, 促进Re, Mo和Cr向γ相中偏聚, 提高固溶强化效果, 减小微孔含量等方式, 显著提高DD11合金持久性能. 但当Hf含量达到0.80%时, 热处理后的残余共晶、碳化物含量较高, 导致合金持久性能明显降低.

关键词 单晶高温合金Hf成分分配比显微组织持久性能    
Abstract

The effect of Hf on the as-cast, heat-treated microstructures and stress rupture properties under 1100 ℃ and 140 MPa was investigated in four second generation Ni-based single crystal superalloys DD11 with various levels of Hf (0~0.80%, mass fraction) additions. The results indicate that increasing Hf addition resulted in decreasing the solidus and liquidus temperatures, while it enhanced the volume fraction of (γ+γ’) eutectic and MC carbide as well as solidification segregation. The number of micropores reduced significantly and the volume fraction of residual (γ+γ’) eutectic and MC carbide increased after heat treatment as Hf content increased. Compared to the Hf-free alloy, the stress rupture life was observed to increase in the alloys with 0.40%Hf, but dropped in the alloy containing 0.80%Hf. Hf addition increased the elemental partitioning ratio of Re, Mo, Cr, resulting in increasing γ/γ’ misfit and decreasing the spacing of γ/γ’ interfacial dislocation networks. The solution strengthing effect was also improved with the enhanced concentration of Re, Mo and Cr in γ phase in Hf-modified alloys. However, when the Hf content was 0.80% in DD11 alloy, the stress rupture properties was decreased obviously due to high volume fraction of residual (γ+γ’) eutectic and MC carbide in heat-treated microstructures.

Key wordssingle crystal superalloy    Hf    elemental partitioning ratio    micrstructure    stress rupture property
    
基金资助:* 国家高技术研究发展计划项目2012AA03A513和2012AA03A511, 国家重点基础研究发展计划项目2010CB631201和教育部技术支撑重点项目625010337资助
图1  4种铸态合金的OM像
图2  铸态合金Hf-3和Hf-4共晶区域的BSE-SEM像
Alloy Primary dendrite Volume fraction / %
arm spacing / μm Eutectic Carbide Micropore
Hf-1 329±12 5.5±2.1 0.08±0.05 0.22±0.05
Hf-2 340±11 8.5±2.5 0.15±0.07 0.10±0.03
Hf-3 347±9 9.6±1.7 0.61±0.05 0.08±0.04
Hf-4 337±11 13.3±2.3 1.20±0.07 0.08±0.05
表1  铸态合金显微组织表征
图3  铸态合金中各元素的凝固偏析系数
图4  4种铸态合金的DSC升温曲线
图5  合金Hf-4经1320 ℃热处理6 h空冷后的初熔组织
图6  合金Hf-1和Hf-4完全热处理后枝晶干处的典型组织
Alloy Size of γ’ phase / nm Volume fraction of γ’ phase / % Channel width of γ phase / nm
Hf-1 380±90 67.3±5.2 72±40
Hf-2 383±62 65.6±6.3 71±50
Hf-3 391±80 65.2±4.3 70±52
Hf-4 395±71 64.3±7.2 71±45
表2  完全热处理态合金枝晶干处的γ’相尺寸、体积分数及γ通道宽度
图7  合金Hf-1, Hf-3和Hf-4完全热处理后的OM像
图8  合金Hf-1, Hf-3和Hf-4完全热处理后未侵蚀的OM像
Alloy Eutectic Carbide Micropore
Hf-1 1.10±0.12 0.05±0.02 0.62±0.12
Hf-2 1.31±0.11 0.12±0.04 0.50±0.09
Hf-3 2.50±0.14 0.31±0.03 0.31±0.08
Hf-4 5.81±0.15 0.95±0.06 0.18±0.09
表3  完全热处理态合金的枝晶间残余共晶、碳化物及微孔体积分数
图9  完全热处理态合金中各元素在γ/γ’两相中的成分分配比
图10  合金在1100 ℃, 140 MPa持久断裂后γ/γ’界面位错网络
图11  1100 ℃, 140 MPa持久条件下合金平均位错间距与平均持久寿命的关系
图12  合金Hf-1 和Hf-4 在1100 ℃, 140 MPa持久断裂后的近断口处纵剖面组织
图13  MC碳化物阻碍固溶扩散通道示意图
[1] Pollock T M, Tin S. J Propul Power, 2006; 22: 361
[2] Newell M, Devendra K, Jennings P A, D'Souza N. Mater Sci Eng, 2005; A412: 307
[3] Siegel D J, Hamilton J. Acta Mater, 2005; 53: 87
[4] Harris K, Wahl J B. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale: Minerals, Metals & Materials Soc, 2004: 45
[5] Chen Q Z, Jones C N, Knowles D M. Mater Sci Eng, 2004; A385: 402
[6] Shah D M, Cetel A. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S L, Schirra J J eds., Superalloys 2000, Warrendale: Minerals, Metals & Materials Soc, 2000: 295
[7] Sellamuthu R, Giamei A F. Metall Trans, 1986; 17A: 419
[8] Duhl D, Sullivan C. J Met, 1971; 23: 38
[9] Hou J S, Guo J T, Wu Y X, Zhou L Z, Ye H Q. Mater Sci Eng, 2010; A527: 1548
[10] Zheng Y R, Cai Y L, Ruan Z C, Ma S W. J Aeronaut Mater, 2006; 26: 25 (郑运荣, 蔡玉林, 阮中慈, 马书伟. 航空材料学报, 2006; 26: 25)
[11] Chen Q Z, Jones N, Knowles D M. Acta Mater, 2002; 50: 1095
[12] Wang L, Wang D, Liu T, Li X W, Jiang W G, Zhang G, Lou L H. Mater Charact, 2015; 104: 81
[13] Liu L R, Jin T, Zhao N R, Wang Z H, Sun X F, Guan H R, Hu Z Q. Mater Sci Eng, 2004; A385: 105
[14] Sellamuthu R, Brody H, Giamei A. Metall Trans, 1986; 17B: 347
[15] Baldan A. J Mater Sci, 1990; 25: 4341
[16] Ren H L. Technology of Metallographic Experiment. Beijing: Metallurgy Industry Press, 2006: 159 (任怀亮.金相实验技术. 北京: 冶金工业出版社, 2006: 159)
[17] Zhang J X, Wang J C, Harada H, Koizumi Y. Acta Mater, 2005; 53: 4623
[18] Zhang J X, Murakumo T, Harada H, Koizumi Y. Scr Mater, 2003; 48: 287
[19] Gungor M N. Metall Trans, 1989; 20A: 2529
[20] Lecomte-Beckers J. Metall Trans, 1988; 19A: 2341
[21] Anton D L, Giamei A F. Mater Sci Eng, 1985; 76: 173
[22] Chen Q Z, Kong Y H, Jones C N, Knowles D M. Scr Mater, 2004; 51: 155
[23] Liu L R, Jin T, Zhao N R, Wang Z H, Sun X F, Guan H R, Hu Z Q. Mater Lett, 2004; 58: 2290
[24] Fuchs G E. J Mater Eng Perform, 2002; 11: 19
[25] Shi Q Y, Li X H, Zheng Y R, Xie G, Zhang J, Feng Q. Acta Metall Sin, 2012; 48: 1237 (石倩颖, 李相辉, 郑运荣, 谢 光, 张 健, 冯 强. 金属学报, 2012; 48: 1237)
[26] Reed R C. The Superalloys: Fundamentals and Applications. Cambridge,UK: Cambridge University Press, 2006: 53
[27] Kong Y H. PhD Dissertation, The University of Hong Kong, 2005
[28] Wang X G, Liu J L, Jin T, Sun X F, Zhou Y Z, Hu Z Q, Do J H, Choi B G, Kim I S, Jo C Y. Mater Sci Eng, 2014; A626: 406
[29] Chen J Y, Feng Q, Cao L M, Sun Z Q. Mater Sci Eng, 2011; A528: 3791
[30] Neumeier S, Pyczak F, Goken M. In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S A eds., Superalloys 2008, Warrendale: Minerals, Metals & Materials Soc, 2008: 109
[31] Rowland L J, Feng Q, Pollock T M. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale: Minerals, Metals & Materials Soc, 2004: 697
[32] Kablov E N, Petrushin N V. In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S A eds., Superalloys 2008, Warrendale: Minerals, Metals & Materials Soc, 2008: 901
[33] Carroll L J, Feng Q, Pollock T M. Metall Mater Trans, 2008; 39A: 1290
[34] Caron P. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S L, Schirra J J eds., Superalloys 2000, Warrendale: Minerals, Metals & Materials Soc, 2000: 737
[35] Carroll L J, Feng Q, Mansfield J F, Pollock T M. Metall Mater Trans, 2006; 37A: 2927
[36] Koizumi Y, Kobayashi T, Yokokawa T, Zhang J X, Osawa M, Harada H, Aoki Y, Arai M. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S L, Schirra J J eds., Superalloys 2000, Warrendale: Minerals, Metals & Materials Soc, 2000: 35
[37] Chen J Y, Zhao B, Feng Q, Cao L M. In: Joseph R, Omer D, Donna B eds., TMS 2009 Annual Meeting and Exhibition, San Francisco: Minerals, Metals & Materials Soc, 2009: 233
[38] Heckl A, Neumeier S, G?ken M, Singer R. Mater Sci Eng, 2011; A528: 3435
[39] Yokokawa T, Osawa M, Nishida K, Kobayashi T, Koizumi Y, Harada H. Scr Mater, 2003; 49: 1041
[40] Fleischmann E, Miller M K, Affeldt E, Glatzel U. Acta Mater, 2015; 87: 350
[41] Mottura A, Warnken N, Miller M K, Finnis M W, Reed R C. Acta Mater, 2010; 58: 931
[42] Hu P P, Chen J Y, Feng Q, Chen Y H, Cao L M, Li X H. Chin J Nonferrous Met, 2011; 21: 332 (胡聘聘, 陈晶阳, 冯 强, 陈艳辉, 曹腊梅, 李相辉. 中国有色金属学报, 2011; 21: 332)
[43] Hopgood A A, Martin J W. Mater Sci Eng, 1986; 82: 27
[44] Fritzemeier L G. In: Reichman S, Duhl D N, Maurer G, Antolovich S, Lund C eds., Superalloys 1988, Warrendale: Minerals, Metals & Materials Soc, 1988: 265
[45] Wilson B C, Hickman J A, Fuchs G E. J Met, 2003; 55: 35
[46] Kong Y H, Chen Q Z, Knowles D M. J Mater Sci, 2004; 39: 6993
[1] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[6] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[7] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[8] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[9] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[10] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[11] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[12] 张子轩, 于金江, 刘金来. 镍基单晶高温合金DD432的持久性能各向异性[J]. 金属学报, 2023, 59(12): 1559-1567.
[13] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[14] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[15] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.