Please wait a minute...
金属学报  2015, Vol. 51 Issue (10): 1227-1234    DOI: 10.11900/0412.1961.2015.00368
  本期目录 | 过刊浏览 |
高性能涡轮盘材料GH4065及其先进制备技术研究
张北江(),赵光普,张文云,黄烁,陈石富
INVESTIGATION OF HIGH PERFORMANCE DISC ALLOY GH4065 AND ASSOCIATED ADVANCED PROCESSING TECHNIQUES
Beijiang ZHANG(),Guangpu ZHAO,Wenyun ZHANG,Shuo HUANG,Shifu CHEN
High Temperature Materials Research Division, Central Iron & Steel Research Institute, Beijing 100081
引用本文:

张北江,赵光普,张文云,黄烁,陈石富. 高性能涡轮盘材料GH4065及其先进制备技术研究[J]. 金属学报, 2015, 51(10): 1227-1234.
Beijiang ZHANG, Guangpu ZHAO, Wenyun ZHANG, Shuo HUANG, Shifu CHEN. INVESTIGATION OF HIGH PERFORMANCE DISC ALLOY GH4065 AND ASSOCIATED ADVANCED PROCESSING TECHNIQUES[J]. Acta Metall Sin, 2015, 51(10): 1227-1234.

全文: PDF(5596 KB)   HTML
摘要: 

在对一系列高合金化模型合金进行系统比选研究的基础上, 发展了新型的GH4065变形高温合金, 该合金化学成分与René 88 DT合金类似, 并针对铸锻制备工艺的要求进一步实施了优化. 研制结果表明, 应用三联低偏析熔铸和多重循环热机械处理等新型技术生产的GH4065合金, 适用于制备先进航空发动机关键热端转动部件, 综合性能完全满足高压压气机盘和低压涡轮盘的工况要求, 必要时可以作为高压涡轮盘的高可靠性、低成本解决方案. 随着变形高温合金材料和制备工艺的发展, 应用铸锻工艺制备的高性能涡轮盘材料能够满足先进航空发动机的技术要求.

关键词 镍基高温合金盘形锻件铸锻工艺微观组织力学性能    
Abstract

Much attention has been paid to the development of more advanced materials for high-pressure compressor and turbine discs of gas turbine engines. A high performance wrought superalloy GH4065 for disc applications has been recently developed based on the comprehensive evaluation of a series of model alloys with characteristic chemical composition, lattice parameter, particularly γ’ volume fraction. The concentration of major alloying elements of GH4065 is closely similar with René 88 DT and specifically optimized considering the demands of ingot metallurgy technologies. Therefore, GH4065 can be considered as an ingot metallurgy version of powder metallurgy René 88 DT. Large scale vacuum arc remelting (VAR) ingots of GH4065 alloy with diameter up to 508 mm have been produced via standard triple melting techniques. Micro-scale segregation of alloying elements on large VAR ingot has been effectively suppressed due both to optimized alloying elements concentration and to improved melting techniques. Ultra-low carbon content (less than 0.02% in mass fraction) significantly decreases the dendritic segregation tendency of certain alloying elements and promotes the uniformity of microstructures. VAR ingot of GH4065 exhibits extraordinary hot plasticity, ingot conversion can be accomplished using conventional open die forging procedure. Fine and uniform γ+γ’ duplex structures can be obtained on billets and disc forgings via a newly developed multi-cycle thermomechanical processing method. The flow stress data show that the formation of γ+γ’ microduplex results in a significant decrease of flow stress in comparison with γ’ dispersion structures under exactly the same deformation conditions. The distribution of strain rate sensitivity m in relationship with temperature and strain rate accurately identifies a specific domain within which γ+γ’ microduplex exhibits superplasticity. Full-scale turbine discs of GH4065 alloy with diameter of 630 mm achieve an optimal combination of creep resistance, fatigue lifetime and ductility. GH4065 discs exhibit extraordinary microstructural and property stability during prolonged thermal exposure, which means that dendritic segregation has been successfully restricted to an acceptable level. The results reveal that highly alloyed disc alloys produced via ingot metallurgy techniques exhibit lower costs and higher productivity, and can still meet the ever increasing demand of high performance gas turbine engines.

Key wordsNi-based superalloy    disc forging    ingot metallurgy    microstructure    mechanical property
    
基金资助:*国家高技术研究发展计划项目2012AA03A510和国家重点基础研究发展计划项目2010CB631203资助
Alloy C Co Cr W Mo Al Ti Nb Fe Ni
GH4586 0.049 11.68 18.09 3.05 8.11 1.65 3.31 Bal.
GH4742 0.052 10.40 14.15 5.03 2.51 2.56 2.62 0.53 Bal.
GH4065 0.011 12.98 15.93 4.02 4.03 2.12 3.78 0.72 1.01 Bal.
René 88 DT 0.050 12.96 16.01 4.01 4.02 2.21 3.75 0.75 0.20 Bal.
GH4720 0.012 14.96 16.03 1.23 2.98 2.53 5.01 Bal.
GH4975 0.115 15.58 7.96 10.22 1.18 5.01 2.49 1.66 0.10 Bal.
表1  高性能变形高温合金涡轮盘材料化学成分对照
图1  高性能变形高温合金盘形锻件的典型制备工艺流程
图2  GH4065合金大尺寸真空自耗重熔锭的低倍组织形貌
图3  热塑性加工过程中GH4065合金的微观组织
图4  热塑性加工过程中GH4065合金的流变行为
图5  GH4065合金直径630 mm全尺寸航空涡轮盘锻件
图6  GH4065合金棒材与涡轮盘锻件的低倍组织形貌
图7  GH4065合金与典型涡轮盘材料的力学性能对比[2,3,25]
[1] Williams J C, Starke E A. Acta Mater, 2003; 51: 5775
[2] Decker R F. JOM, 2006; 58(9): 32
[3] Sims C T, Stoloff N S, Hagel W C. Superalloys II—High Temperature Materials for Aerospace and Industrial Power. New York: John wiley & Sons, 1987: 32
[4] Donachie M J, Donachie S J. Superalloys: A Technical Guide. Ohio: ASM International, 2002: 120
[5] Shi C X, Zhong Z Y. Acta Matall Sin, 1997; 33: 1 (师昌绪, 仲增墉. 金属学报, 1997; 33: 1)
[6] Heaney J A, Lasonde M L, Powell A M, Bond B J, O'Brien C M. In: Ott E, Banik A, Liu X B, Dempster I, Heck K, Andersson J, Groh J, Gabb T, Helmink R, Sarnek A W eds., 8th Int Symp on Superalloy 718 and Derivatives, Pittsburgh: TMS, 2014: 67
[7] Devaux A, Picqué B, Gervais M F, Georges E, Poulain T, Héritier P. In: Huron E S, Reed R C, Hardy M C, Mills M J, Montero R E, Telesman J eds., Superalloy 2012: 12th Int Symp on Superalloys, Pittsburgh: TMS, 2012: 911
[8] Monajati H, Jahazi M, Yue S, Taheri A K. Metall Mater Trans, 2005; 36A: 895
[9] Bond B J, O'Brien C M, Russell J L, Heane J A, Lasonde M L. In: Ott E, Banik A, Liu X B, Dempster I, Heck K, Andersson J, Groh J, Gabb T, Helmink R, Sarnek A W eds., 8th Int Symp on Superalloy 718 and Derivatives, Pittsburgh: TMS, 2014: 107
[10] Long Z D, Zhuang J Y, Deng B, Zhong Z Y. Acta Metall Sin, 1999; 35: 1211 (龙正东, 庄景云, 邓 波, 仲增墉. 金属学报, 1999; 35: 1211)
[11] Zhang B J, Zhao G P, Jiao L Y, Xu G H, Qin H Y, Feng D. Acta Metall Sin, 2005; 41: 351 (张北江, 赵光普, 焦兰英, 胥国华, 秦鹤勇, 冯 涤. 金属学报, 2005; 41: 351)
[12] Zhang B J, Zhao G P, Xu G H, Feng D. Acta Metall Sin, 2005; 41: 1207 (张北江, 赵光普, 胥国华, 冯 涤. 金属学报, 2005; 41: 1207)
[13] Carter W T, Jones R M F. JOM, 2005; 57(4): 52
[14] Cantwell P R, Tang M, Dillon S J, Luo J, Rohrer G S, Harmer M P. Acta Mater, 2014; 62: 1
[15] Robson J D. Acta Mater, 2013; 61: 7781
[16] Fang B, Ji Z, Liu M, Tian G, Jia C, Zeng T T, Hu B F, Wang C C. Mater Sci Eng, 2014; A590: 255
[17] Larrouy B, Villechaise P, Cormie J, Berteaux O. In: Ott E, Banik A, Liu X B, Dempster I, Heck K, Andersson J, Groh J, Gabb T, Helmink R, Sarnek A W eds., 8th Int Symp on Superalloy 718 and Derivatives, Pittsburgh: TMS, 2014: 713
[18] Valitov V A. In: Ott E, Banik A, Liu X B, Dempster I, Heck K, Andersson J, Groh J, Gabb T, Helmink R, Sarnek A W eds., 8th Int Symp on Superalloy 718 and Derivatives, Pittsburgh: TMS, 2014: 665
[19] Wlodek S T, Kelly M, Alden D A. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Proc 8th Int Symp on Superalloy, Pennsylvania: TMS, 1996: 129
[20] Carter J L W, Kuper M W, Uchic M D, Mills M J. Mater Sci Eng, 2014; A605: 127
[21] Findley K O, Saxena A. Metall Mater Trans, 2005; 37A: 1469
[22] Tiley J, Viswanathan G B, Srinivasan R, Banerjee R, dimiduk D M, Fraser H L. Acta Mater, 2009; 57: 2538
[23] MacSleyne J, Uchic M D, Simmons J P, Graef M D. Acta Mater, 2009; 57: 6251
[24] Radis R, Schaffer M, Albu M, Kothleitner G, Polt P, Kozeschnik E. Acta Mater, 2009; 57: 5739
[25] Reed R C. The Superalloys: Fundamentals and Applications. Cambridge: Cambridge University Press, 2006: 236
[26] Viswanathan G B, Sarosi P M, Henry M F, Whitis D D, Milligan W W, Mills M J. Acta Mater, 2005; 53: 3041
[27] Hayes R W, Unocic R R, Nasrollahzadeh M. Metall Mater Trans, 2015; 46A: 218
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[5] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[6] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[10] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[11] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[12] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[13] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[14] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[15] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.