Please wait a minute...
金属学报  2015, Vol. 51 Issue (9): 1129-1135    DOI: 10.11900/0412.1961.2015.00100
  本期目录 | 过刊浏览 |
陶瓷基复合材料辅助脉冲电流液相扩散连接的界面反应及接头强化机制
吴铭方1,刘飞2,王凤江1(),乔岩欣1
2 镇江技师学院, 镇江 212000
INTERFACIAL REACTION AND STRENGTHENING MECHANISM OF CERAMIC MATRIX COMPOSITE JOINTS USING LIQUID PHASE DIFFUSION BONDING WITH AUXILIARY PULSE CURRENT
Mingfang WU1,Fei LIU2,Fengjiang WANG1(),Yanxin QIAO1
1 Key Laboratory of Advanced Welding Technology of Jiangsu Province, Jiangsu University of Science and Technology, Zhenjiang 212003
2 Zhenjiang Institute of Technology, Zhenjiang 212000
引用本文:

吴铭方,刘飞,王凤江,乔岩欣. 陶瓷基复合材料辅助脉冲电流液相扩散连接的界面反应及接头强化机制[J]. 金属学报, 2015, 51(9): 1129-1135.
Mingfang WU, Fei LIU, Fengjiang WANG, Yanxin QIAO. INTERFACIAL REACTION AND STRENGTHENING MECHANISM OF CERAMIC MATRIX COMPOSITE JOINTS USING LIQUID PHASE DIFFUSION BONDING WITH AUXILIARY PULSE CURRENT[J]. Acta Metall Sin, 2015, 51(9): 1129-1135.

全文: PDF(4079 KB)   HTML
摘要: 

采用Cu-Zr箔/Cu箔/Cu-Zr箔中间层对Ti(C, N)-Al2O3陶瓷基复合材料进行了液相扩散连接实验, 研究了辅助脉冲电流对元素扩散、界面反应产物及接头强化机制的影响. 结果表明, 液相扩散连接过程中辅助脉冲电流条件下可以在较低的焊接温度和较短的焊接时间内实现更高的接头强度. 辅助脉冲电流液相扩散连接工艺显著改变了Zr和Cu在Ti(C, N)-Al2O3陶瓷基复合材料和钎缝中的扩散行为, 减少Zr的活性, 抑制其与Al2O3陶瓷颗粒发生激烈的化学反应. 辅助脉冲电流可以抑制陶瓷颗粒相溶解进入焊缝以及界面扩散过渡层和Zr-Cu反应层的厚度, 确保焊缝强化以及界面强化, 这是辅助脉冲电流液相扩散连接接头具有较高强度水平的关键所在.

关键词 Ti(C,N)-Al2O3液相扩散连接辅助脉冲电流界面反应接头强化    
Abstract

Ceramic matrix composites (CMCs) is attracted in airspace and nuclear engineering due to their high temperature, corrosion and wearing resistance, but the usage is limited by the joining between CMC and other metals due to obvious incompatibility on physical and chemical aspects on them. The liquid phase-diffusion bonding (LPDB) on Ti(C, N)-Al2O3 CMC/Cu joint was studied using the Cu-Zr foil/Cu foil/Cu-Zr foil sanwich as an interlayer in this work. Auxiliary pulse current was also added to control the elemental diffusion and interfacial reaction during LPDB. The element diffusion and reacted products at the interface were analyzed with SEM, EPMA and EDS, and the joint strength was tested with four points bending method. The results show that with an auxiliary pulse current during LPDB, a higher joint strength is reached with a lower bonding temperature and a shorter holding time. The diffusion behavior of element Zr and Cu in CMC and the interfacial area is obviously changed, and the activity of Zr element and its chemical reaction with Al2O3 are depressed by the auxiliary pulse current during LPDB. The diffusion of ceramic partilces into the interface and the thickness of corresponding diffusion transition zone (DTZ) and Zr-Cu interfacial reaction zone (IRZ) at the interface are also depressed by the auxiliary pulse current, which strengthens the interface, and is always kept an higher joint strength.

Key wordsTi(C,N)-Al2O3    liquid phase diffusion bonding    auxiliary pulse current    interfacial reaction    joint strengthening
    
基金资助:* 国家自然科学基金项目51175239, 江苏省科技计划项目BK2011494和江苏省高校自然科学研究项目11KJA430005资助
图1  辅助脉冲电流条件下在900 ℃保温不同时间的Ti(C, N)-Al2O3接头微观形貌及元素线分布的EPMA分析
Position Al Ti W Zr Cu
A 2.1 31.2 2.6 41.6 22.5
B - 1.2 0.5 59.6 38.7
C - - - 5.3 94.7
D - 62.4 2.9 29.8 4.9
E - 5.2 - 51.1 43.9
F 3.9 - - - 96.1
表1  图1c和2c中特征点A~F的EDS分析
图2  无辅助脉冲电流条件下在980 ℃保温不同时间的Ti(C, N)-Al2O3接头微观形貌及元素线分布的EPMA分析
图3  Cu/Zr接头微观形貌及元素线分布的EPMA分析
图4  加热温度和保温时间对Ti(C, N)-Al2O3接头强度的影响
图5  四点弯曲Ti(C, N)-Al2O3接头的裂纹扩展示意图
[1] Zhang D K, Wu A P, Zou G S. Trans China Weld Inst, 2005; 26(10): 59 (张德库, 吴爱萍, 邹贵生. 焊接学报, 2005; 26(10): 59)
[2] Wang Q Z, Liu Y, Zhang Y Z, Guan D H, Bi J. Trans China Weld Inst, 2006; 27(8): 43 (王全兆, 刘 越, 张玉政, 关德慧, 毕 敬. 焊接学报, 2006; 27(8): 43)
[3] Wu M F, Zhou X L, Ma C, Yang P. Trans China Weld Inst, 2006; 27(12): 1 (吴铭方, 周小丽, 马 骋, 杨 沛. 焊接学报, 2006; 27(12): 1)
[4] Wang Y, Cao J, Geng J C. China Welding, 2009; 18(4): 39
[5] Passerone A, Muolo M L. Mater Manuf Process, 2000; 15: 631
[6] Chen Z, Cao M S, Zhao Q Z. Mater Sci Eng, 2004; A380: 394
[7] Li Z R, Cao J, Feng J C. Trans China Weld Inst, 2003; 24(2): 4 (李卓然, 曹 健, 冯吉才. 焊接学报, 2003; 24(2): 4)
[8] Osendi M I, De Pablos A, Miranzo P. Mater Sci Eng, 2001; A308: 53
[9] Li S J, Liang X B, Duan H P. Key Eng Mater, 2002; 217: 101
[10] Rabin B H, Moore G A. In: Carin A H, Schwartz D S, Silberglitt R S, Loehman R E eds., Mater Res Soc Symp Proc, 1993; 314: 197
[11] He D H, Fu Z Y, Wang H, Zhang J Y. Trans China Weld Inst, 2002; 23(6): 33 (何代华, 傅正义, 王 皓, 张金咏. 焊接学报, 2002; 23(6): 33)
[12] He D H, Fu Z Y, Wang H, Zhang J Y. Trans China Weld Inst, 2002; 23(1): 85 (何代华, 傅正义, 王 皓, 张金咏. 焊接学报, 2002; 23(1): 85)
[13] Liu H J, Feng J C, Li G, Wang Y G. Welding Joining, 2000; (9): 7 (刘会杰, 冯吉才, 李 广, 王跃国. 焊接, 2000; (9): 7)
[14] Wanger T, Kirchheim R, Rühle M. Acta Metall Mater, 1995; 43: 1053
[15] Zhang G, Zhang J, Pei Y, Li S, Chai D. Mater Sci Eng, 2008; A488: 146
[16] Yang W, Lin T, He P, Wei H, Xing L, Jia D. Ceram Int, 2014; 40: 7253
[17] Wu M F, Yu Z S, Jiang C Y, Qi K, Cheng X N. Rare Met Mater Eng, 2000; 29: 419 (吴铭方, 于治水, 蒋成禹, 祁 凯, 程晓农. 稀有金属材料与工程, 2000; 29: 419)
[18] Wu M F, Wang F, Wang F J, Xu G X. Trans China Weld Inst, 2014; 35(6): 31 (吴铭方, 王 斐, 王凤江, 胥国祥. 焊接学报, 2014; 35(6): 31)
[19] Loehman R E, Hosking F M, Gauntt B, Kotula P G, Lu P. J Mater Sci, 2005; 40: 2319
[20] Ye D L,Hu J H. Practical Handbook on the Thermodynamic Data of Inorganic Substances. 2nd Ed., Beijing: Metallurgical Industry Press, 2002: 57 (叶大伦,胡建华. 实用无机物热力学数据手册. 第二版, 北京: 冶金工业出版社, 2002: 57)
[21] Ihsan B I,translated by Cheng N L,Niu S T,Xu G Y. Thermochemical Data of Pure Substances. Beijing: Science Press, 2003: 17 (Ihsan B I著,程乃良,牛四通,徐桂英译. 纯物质热化学数据手册. 北京: 科学出版社, 2003: 17)
[22] Xu R,Jin T F.Thermodynamics and Kinetics of Materials. Harbin: Harbin Institute of Technology Press, 2003: 10 (徐 瑞,荆天辅.材料热力学与动力学. 哈尔滨: 哈尔滨工业大学出版社, 2003: 10)
[23] Chen Z, Liu B, Wang Y X, Wei Q L. Rare Met Mater Eng, 2001; 30: 331 (陈 铮, 刘 兵, 王永欣, 魏齐龙. 稀有金属材料与工程, 2001; 30: 331)
[24] Chang G W, Xue Q G. J Univ Sci Technol Beijing, 1999; 21: 175 (常国威, 薛庆国. 北京科技大学学报, 1999; 21: 175)
[25] He S X, Wang J, Zhou Y H. Acta Metall Sin, 2002; 38: 479 (何树先, 王 俊, 周尧和. 金属学报, 2002; 38: 479)
[1] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.
[2] 宋庆忠, 潜坤, 舒磊, 陈波, 马颖澈, 刘奎. 镍基高温合金K417G与氧化物耐火材料的界面反应[J]. 金属学报, 2022, 58(7): 868-882.
[3] 王超, 张旭, 王玉敏, 杨青, 杨丽娜, 张国兴, 吴颖, 孔旭, 杨锐. SiCf/Ti65复合材料界面反应与基体相变机理[J]. 金属学报, 2020, 56(9): 1275-1285.
[4] 张志杰, 黄明亮. 原位研究Cu/Sn-37Pb/Cu微焊点液-固电迁移行为[J]. 金属学报, 2020, 56(10): 1386-1392.
[5] 冯业飞,周晓明,邹金文,王超渊,田高峰,宋晓俊,曾维虎. 粉末高温合金中SiO2夹杂物与基体的界面反应机理及对其变形行为的影响[J]. 金属学报, 2019, 55(11): 1437-1447.
[6] 邱丰, 佟昊天, 沈平, 丛晓霜, 王轶, 姜启川. 综述:SiC/Al界面反应与界面结构演变规律及机制[J]. 金属学报, 2019, 55(1): 87-100.
[7] 赵宁,邓建峰,钟毅,殷录桥. 热迁移下Ni/Sn-xCu/Ni微焊点钎焊界面金属间化合物的演变[J]. 金属学报, 2017, 53(7): 861-868.
[8] 张志杰,黄明亮. Cu/Sn-52In/Cu微焊点液-固电迁移行为研究[J]. 金属学报, 2017, 53(5): 592-600.
[9] 靳鹏,隋然,李富祥,俞伟元,林巧力. 熔融6061/4043铝合金在TC4钛合金表面的反应润湿[J]. 金属学报, 2017, 53(4): 479-486.
[10] 王玉敏, 张国兴, 张旭, 杨青, 杨丽娜, 杨锐. 连续SiC纤维增强钛基复合材料研究进展*[J]. 金属学报, 2016, 52(10): 1153-1170.
[11] 陈晓燕,金喆,白雪峰,周亦胄,金涛,孙晓峰. C对一种镍基高温合金与陶瓷型壳界面反应及润湿性的影响*[J]. 金属学报, 2015, 51(7): 853-858.
[12] 黄明亮, 张志杰, 冯晓飞, 赵宁. 液-固电迁移Ni/Sn-9Zn/Ni焊点反极性效应研究[J]. 金属学报, 2015, 51(1): 93-99.
[13] 陈晓燕, 周亦胄, 张朝威, 金涛, 孙晓峰. Hf对一种高温合金与陶瓷材料润湿性及界面反应的影响*[J]. 金属学报, 2014, 50(8): 1019-1024.
[14] 吴铭方, 匡泓锦, 王凤江, 林红香, 胥国祥. Zr/Cu/Zr部分瞬间液相焊扩散连接Ti(C, N)-Al2O3陶瓷基复合材料*[J]. 金属学报, 2014, 50(5): 619-625.
[15] 柯常波, 周敏波, 张新平. Sn/Cu互连体系界面金属间化合物Cu6Sn5演化和生长动力学的相场法模拟*[J]. 金属学报, 2014, 50(3): 294-304.