Please wait a minute...
金属学报  2015, Vol. 51 Issue (9): 1049-1058    DOI: 10.11900/0412.1961.2015.00092
  本期目录 | 过刊浏览 |
Zr含量对Nb-Ti-Si基超高温合金组织及抗氧化性能的影响
曾宇翔1,郭喜平1(),乔彦强1,聂仲毅2
2 中钢集团西安重机有限公司, 西安 710077
EFFECT OF Zr ADDITION ON MICROSTRUCTURE AND OXIDATION RESISTANCE OF Nb-Ti-Si BASE ULTRAHIGH-TEMPERATURE ALLOYS
Yuxiang ZENG1,Xiping GUO1(),Yanqiang QIAO1,Zhongyi NIE2
1 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi′an 710072
2 Sinosteel Xi′an Heavy Machinery Co. Ltd., Xi′an 710077
引用本文:

曾宇翔,郭喜平,乔彦强,聂仲毅. Zr含量对Nb-Ti-Si基超高温合金组织及抗氧化性能的影响[J]. 金属学报, 2015, 51(9): 1049-1058.
Yuxiang ZENG, Xiping GUO, Yanqiang QIAO, Zhongyi NIE. EFFECT OF Zr ADDITION ON MICROSTRUCTURE AND OXIDATION RESISTANCE OF Nb-Ti-Si BASE ULTRAHIGH-TEMPERATURE ALLOYS[J]. Acta Metall Sin, 2015, 51(9): 1049-1058.

全文: PDF(10943 KB)   HTML
摘要: 

采用真空非自耗电弧熔炼法制备了成分为Nb-22Ti-15Si-5Cr-3Hf-3Al-xZr (x=0, 0.5, 1, 2, 4和8, 原子分数, %)的合金, 研究了Zr含量对合金电弧熔炼态组织及高温抗氧化性能的影响. 结果表明, 6种不同Zr含量的合金均由Nb固溶体和g-(Nb, X)5Si3 (X为Ti, Hf, Cr 和 Zr)组成, 添加Zr并未改变合金的相组成, 但随着Zr含量增加, 合金中初生g-(Nb, X)5Si3的尺寸增大, 含量提高. 对不同Zr含量合金在1250 ℃分别氧化1~50 h发现, 随着Zr含量的增加, 合金氧化膜黏附性及致密性均得到显著改善, Zr含量较高的合金(x=4和8)氧化50 h后, 氧化膜出现明显的分层现象: 最外层为致密的单相TiO2层, 中间层主要由ZrO2, TiNb2O7和TiO2组成, 而内层主要由Si的氧化物组成. 随着合金中Zr含量增加, 氧化膜厚度及单位表面积的氧化增重均显著降低, 抗氧化性能得到明显改善.

关键词 Nb-Ti-Si基超高温合金相组成显微组织高温氧化    
Abstract

Nb-Ti-Si base in situ composites which consist of Nb solid solution (Nbss) and silicides (a-Nb5Si3, b-Nb5Si3, g-Nb5Si3 and/or Nb3Si) phases, have shown great potential as alternative materials to Ni-based superalloys due to their high melting points (beyond 1700 ℃), good formability, low density (6.6~7.2 g/cm3) and high strength. However, a major hindrance to the applications of these alloys at elevated temperatures is their poor oxidation resistance. Alloying is an effective method to improve the integrated properties of the alloys, especially for the oxidation resistance. Up to now, many beneficial elements such as Ti, Al, Cr and Sn have been employed to ameliorate their oxidation resistance. Nevertheless, there is no systematic and comprehensive investigation on the effect of Zr contents on the microstructure and oxidation behavior of the alloys based on Nb-Ti-Si system. The aim of this work is to clarify the effects of Zr contents on phase selection, microstructure and high temperature oxidation resistance of Nb-Ti-Si based alloys in detail. The constituent phases, microstructure and composition of the alloys under as-cast state and after oxidation were investigated by OM, XRD, SEM and EDS. Thus, six Nb-Ti-Si base ultrahigh-temperature alloys with compositions of Nb-22Ti-15Si-5Cr-3Hf-3Al-xZr (x=0, 0.5, 1, 2, 4, 8, atomic fraction, %) were prepared by vacuum non-consumable arc-melting. The results show that the alloys with different Zr contents are mainly composed of Nbss and g-(Nb, X)5Si3 (X represents Ti, Hf, Cr and Zr). However, the addition of Zr has an obvious affect on the microstructure of Nb-Ti-Si base alloys. Both the sizes and amounts of primary g-(Nb, X)5Si3 increase with increase in Zr contents. Alloys with different Zr contents were oxidized at 1250 ℃ for 1~50 h, respectively. It is found that both adhesion and compactness of the scales are improved effectively by increase in Zr contents. The scales of alloys with higher Zr contents (x=4 and 8) after oxidation for 50 h show an obvious layered structure: the outmost layer is only composed of TiO2, the middle layer mainly consists of ZrO2, TiNb2O7 and TiO2, and the inner layer is mainly comprised of Si-rich oxides. The mass gain per unit area and the thickness of the scale after oxidation decrease with increase in Zr contents in the alloys, indicating that the addition of Zr can improve the oxidation resistance of the alloys significantly.

Key wordsNb-Ti-Si base ultrahigh-temperature alloy    phase constituent    microstructure    high temperature oxidation
    
基金资助:* 国家自然科学基金项目51371145, 51431003, U1435201和51401166资助
图1  Nb-22Ti-15Si-5Cr-3Hf-3Al-xZr合金在电弧熔炼态的XRD谱
Alloy Phase Nb Ti Si Cr Al Hf Zr
0Zr Nbss 69.4 19.8 1.7 5.1 3.0 1.0 -
g-(Nb, X)5Si3 41.5 17.3 33.9 1.2 2.2 3.9 -
2Zr Nbss 60.7 24.1 1.6 8.3 3.1 1.8 0.4
g-(Nb, X)5Si3 40.1 15.0 35.1 0.4 2.5 3.9 3.0
8Zr Nbss 66.8 20.4 1.5 4.5 3.1 1.5 2.2
g-(Nb, X)5Si3 25.9 16.0 34.9 0.7 3.0 4.0 15.5
表 1  0Zr, 2Zr和8Zr合金中各相成分的EDS分析
图2  不同Zr含量Nb-Ti-Si基合金电弧熔炼态组织的BSE像
图3  不同Zr含量合金在1250 ℃的等温氧化动力学曲线
图4  不同Zr含量Nb-Ti-Si合金在1250 ℃氧化50 h后的宏观形貌
Alloy Phase O Nb Ti Si Cr Al Hf Zr
0Zr Nbss 56.6 31.3 8.6 0.1 1.9 1.2 0.3 -
g-(Nb, X)5Si3 20.9 36.1 11.4 26.2 0.8 1.9 2.7 -
2Zr Nbss 53.0 32.5 10.2 0.1 2.1 1.3 0.3 0.5
g-(Nb, X)5Si3 19.3 31.2 14.5 26.9 1.2 2.0 3.4 1.5
8Zr Nbss 52.5 31.5 2.4 0.4 4.0 6.8 0.5 1.9
g-(Nb, X)5Si3 14.6 29.1 10.8 29.0 0.3 2.3 2.7 11.2
表2  图6中0Zr, 2Zr和8Zr合金内氧化区中Nbss和g-(Nb, X)5Si3 的EDS成分分析
图5  0Zr, 2Zr和8Zr合金在1250 ℃氧化1, 5和20 h后氧化膜的XRD谱
图6  0Zr, 2Zr和8Zr合金经1250 ℃, 5 h氧化后氧化膜以及内氧化区横截面的BSE像
图7  0Zr, 2Zr和8Zr合金在1250 ℃氧化50 h后氧化膜的XRD谱
Alloy Point Phase O Nb Ti Si Al Cr Hf Zr
0Zr 1 Ti-rich oxide 73.7 9.0 9.4 1.5 1.4 3.9 1.1 -
2 Ti2Nb10O29 75.4 16.5 4.4 2.2 0.5 0.3 0.7 -
2Zr 3 Ti2Nb10O29 69.6 21.2 6.3 0.1 0.5 0.6 0.7 1.0
4 Si-rich oxide 74.3 9.8 2.8 11.6 0.3 0.2 0.5 0.5
5 Ti-rich oxide 67.4 9.8 12.6 0.5 2.1 5.4 1.3 0.9
8Zr 6 TiO2 71.7 8.1 11.6 0.1 1.0 5.0 0.6 1.9
7 ZrO2 72.6 6.2 1.0 5.7 0.9 0.2 2.8 10.6
8 TiNb2O7 72.4 15.4 9.5 0.1 0.4 0.1 0.5 1.6
9 Si-rich oxide 73.4 4.5 1.4 17.9 2.0 0.2 0.1 0.5
表3  0Zr, 2Zr和8Zr合金在1250 ℃氧化50 h所形成的氧化膜和内氧化区中各相的EDS成分分析
图8  0Zr, 2Zr和8Zr合金经1250 ℃, 50 h氧化后氧化膜横截面的BSE像
[1] Bewlay B P, Jackson M R, Lipsitt H A. Metall Mater Trans, 1996; 27A: 3801
[2] Grammenos I, Tsakiropoulos P. Intermetallics, 2010; 18: 242
[3] Bewlay B P, Jackson M R, Zhao J C, Subramanian P R. Metall Mater Trans, 2003; 34A: 2043
[4] Wu C L, Zhou L Z, Guo J T. Acta Metall Sin, 2006; 42: 1061 (伍春兰, 周兰章, 郭建亭. 金属学报, 2006; 42: 1061)
[5] Kang Y W, Qu S Y, Song J X, Han Y F. Acta Metall Sin, 2008; 44: 593 (康永旺, 曲士昱, 宋尽霞, 韩雅芳. 金属学报, 2008; 44: 593)
[6] Jia L N, Gao M, Ge J R, Zheng L J, Sha J B, Zhang H. Acta Metall Sin, 2011; 47: 88 (贾丽娜, 高 明, 盖京茹, 郑立静, 沙江波, 张 虎. 金属学报, 2011; 47: 88)
[7] Wang J, Guo X P, Guo J M. Chin J Aeronaut, 2009; 22: 544
[8] Zhang S, Guo X P. Intermetallics, 2015; 57: 83
[9] Xiong B W, Cai C C, Wan H, Zheng Y H. J Alloys Compd, 2009; 486: 330
[10] Guo J M, Guo X P, Song S G. Acta Metall Sin, 2008; 44: 574 (郭金明, 郭喜平, 宋曙光. 金属学报, 2008; 44: 574)
[11] Zelenitsas K, Tsakiropoulos P. Mater Sci Eng, 2006; A416: 269
[12] Geng J, Tsakiropoulos P, Shao G S. Mater Sci Eng, 2006; A441: 26
[13] Li Z F, Tsakiropoulos P. Intermetallics, 2012; 26: 18
[14] Wang L G, Jia L N, Cui R J, Zheng L J, Zhang H. Chin J Aeronaut, 2012; 25: 292
[15] Grammenos I, Tsakiropoulos P. Intermetallics, 2011; 19: 1612
[16] Geng J, Tsakiropoulos P. Intermetallics, 2007; 15: 382
[17] Behrani V, Thom A J, Kramer M J, Akinc M. Intermetallics, 2006; 14: 24
[18] Vellios N, Tsakiropoulos P. Intermetallics, 2010; 18: 1729
[19] Vellios N, Tsakiropoulos P. Intermetallics, 2007; 15: 1518
[20] Yuan W H, Liang Z Y. Mater Des, 2011; 32: 4195
[21] Mousa M, Wanderka N, Timpel M, Singh S, Krüger M, Heilmaier M, Banhart J. Ultramicroscopy, 2011; 111: 706
[22] Gorr B, Wang L, Burk S, Azim M, Majumdar S, Christ H J, Mukherji D, R?sler J, Schliephake D, Heilmaier M. Intermetallics, 2014; 48: 34
[23] Yu Q H, Zhou C G, Zhang H Y, Zhao F. J Eur Ceram Soc, 2010; 30: 889
[24] Li X, Guo X P, Qiao Y Q. Oxid Met, 2015; 83: 253
[25] Li X, Guo X P. Acta Metall Sin, 2012; 48: 1394 (李 轩, 郭喜平. 金属学报, 2012; 48: 1394)
[26] Tian Y X, Guo J T, Sheng L Y, Cheng G M, Zhou L Z, He L L, Ye H Q. Intermetallics, 2008; 16: 807
[27] Li X F, Guo X P. Acta Metall Sin, 2013; 49: 853 (李小飞, 郭喜平. 金属学报, 2013; 49: 853)
[28] Liu A Q, Sun L, Li S S, Han Y F. J Rare Earth, 2007; 25: 474
[29] Lee D B, Woo S W. Intermetallics, 2005; 13: 169
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[4] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[5] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[6] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[7] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[8] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[9] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[10] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[11] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[12] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[13] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[14] 解磊鹏, 孙文瑶, 陈明辉, 王金龙, 王福会. 制备工艺对FGH4097高温合金微观组织与性能的影响[J]. 金属学报, 2022, 58(8): 992-1002.
[15] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.