Please wait a minute...
金属学报  2015, Vol. 51 Issue (9): 1085-1091    DOI: 10.11900/0412.1961.2015.00044
  本期目录 | 过刊浏览 |
固溶温度对S32760双相不锈钢组织与耐点蚀性能的影响
陈雨来1,罗照银2,李静媛2()
2 北京科技大学材料科学与工程学院, 北京 100083
EFFECT OF SOLUTION TEMPERATURE ON MICRO- STRUCTURE AND PITTING CORROSION RESISTANCE OF S32760 DUPLEX STAINLESS STEEL
Yulai CHEN1,Zhaoyin LUO2,Jingyuan LI2()
1 Metallurgical Engineering Research Institute, University of Science and Technology Beijing, Beijing 100083
2 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
引用本文:

陈雨来,罗照银,李静媛. 固溶温度对S32760双相不锈钢组织与耐点蚀性能的影响[J]. 金属学报, 2015, 51(9): 1085-1091.
Yulai CHEN, Zhaoyin LUO, Jingyuan LI. EFFECT OF SOLUTION TEMPERATURE ON MICRO- STRUCTURE AND PITTING CORROSION RESISTANCE OF S32760 DUPLEX STAINLESS STEEL[J]. Acta Metall Sin, 2015, 51(9): 1085-1091.

全文: PDF(6431 KB)   HTML
摘要: 

利用OM, EPMA, SEM, EDS, TEM等研究了固溶温度对S32760双相不锈钢热轧板显微组织的影响及合金元素的分布特征, 并通过电化学工作站测定了材料的耐点蚀性能. 结果表明, S32760双相不锈钢在1080 ℃以上高温固溶过程中, N元素从g相扩散转移至d相中. 若固溶后缓慢冷却, 则N原子又重新迁移回g相中; 如果固溶后水冷, 则N原子来不及扩散, 于d相中原位弥散析出Cr2N颗粒. Cr2N颗粒的数量由淬火前的固溶温度决定, 温度越高数量越多. 当固溶温度从1100 ℃升至1300 ℃时, d相中N的固溶度快速上升, 其显微硬度由281 HV提高至345 HV; 而g相由于相比例降低也使得N的浓度间接上升, 显微硬度由290 HV升至314 HV. 同时, 由于实验钢中含有W, S32760双相不锈钢热轧板在1040 ℃以下热处理有s相析出, 因此其固溶水冷温度区间较窄, 最佳固溶温度为1060 ℃. 此温度保温60 min后水冷, 试样中无析出物, Brinell硬度为249 HBW, 点蚀电位为1068 mV, 维钝电流密度为1.48×10-4 A/cm2.

关键词 双相不锈钢固溶处理析出耐点蚀性能    
Abstract

In order to obtain the optimal corrosion resistance, the characteristics of microstructure and alloy elements distribution of S32760 duplex stainless steel were studied after solid solution treatment at various temperatures from 1000 ℃ to 1300 ℃ by means of OM, EPMA, SEM, EDS and TEM. In addition, the pitting corrosion resistance was measured by the electrochemical workstation. The results show that the N atoms diffused into d phase from g phase during solution treatment when the temperature was higher than 1080 ℃. N atoms migrated back into g phase when the subsequent cooling was slow enough. However, Cr2N phase in situ precipitated during quenching because there was not enough time for the N atoms to diffuse back into g phase. Cr2N particles increased with the solution temperature increasing. Furthermore, s phase precipitated when the tested sheet was heat treated at or below 1040 ℃ due to the high content of N. Thus it is obvious that the solution temperature range of the S32750 duplex stainless steel is quite narrow, which is between 1040 ℃ and 1080 ℃, and it is confirmed that the optimal temperature is 1060 ℃. After treated at 1060 ℃ for 60 min, the Brinell hardness of S32760 steel is 249 HBW, pitting potential is up to 1068 mV and the passive current density is as low as 1.48×10-4 A/cm2.

Key wordsduplex stainless steel    solution treatment    precipitation    corrosion resistance
    
基金资助:* 国家自然科学基金项目51174026和十二五国家科技支撑计划项目2012BAE04B02资助
Steel C Cr Ni Mo N W Cu Mn Si S P Fe
ASTM A789 ≤0.030 24.0~26.0 6.0~8.0 3.0~4.0 0.20~0.30 0.50~1.00 0.50~1.00 ≤1.00 ≤1.00 ≤0.010 ≤0.030 Bal.
S32760 steel 0.014 25.11 6.93 3.51 0.253 0.69 0.69 0.77 0.52 0.001 0.028 Bal.
表1  实验用S32760双相不锈钢板及ASTM标准的化学成分
图1  S32760双相不锈钢不同温度固溶60 min后水冷的OM像
图2  S32760双相不锈钢1000 ℃保温60 min后的SEM像及EPMA面扫描结果
图3  经1000和1300 ℃热处理后试样内部析出物及其脱落后的SEM像
图4  S32760双相不锈钢1250 ℃固溶水冷后析出物的TEM像及析出物SAED谱
Point Mass fraction / % Phase
Cr Mo Ni
1 22.04 2.64 7.99 g
2 21.67 2.50 10.64 g
3 25.23 3.79 4.26 d
4 20.33 2.14 8.26 g
5 19.76 2.17 7.69 g
6 19.68 2.30 7.68 g
表2  图3a中典型相化学成分的EDS分析
图5  S32760双相不锈钢不同温度固溶处理后的OM像
图6  S32760双相不锈钢经不同温度固溶处理后的极化曲线
图7  S32760双相不锈钢经不同温度固溶处理后的点蚀电位及维钝电流密度
[1] Gurrappa I, Krishna Reddy C V. J Mater Process Technol, 2007; 182: 195
[2] Huang C S, Shih C C. Mater Sci Eng, 2005; A402: 66
[3] Migiakis K, Daniolos N, Papadimitriou G D. Mater Manuf Processes, 2010; 25: 598
[4] Sun X G. Shanxi Metall, 2013; (3): 6 (孙晓刚. 山西冶金, 2013; (3): 6)
[5] Wu J. Duplex Stainless Steel. Beijing: Metallurgy Industry Press, 1999: 8 (吴 玖. 双相不锈钢. 北京: 冶金工业出版社, 1999: 8)
[6] Yang S M, Chen Y C, Chen C H, Huang W P, Lin D Y. J Alloys Compd, 2015; 633: 48
[7] Fargas G, Anglada M, Mateo A. J Mater Process Technol, 2009; 209: 1770
[8] Bettini E, Kivis?kk U, Leygraf C, Pan J. Electrochim Acta, 2013; 113: 280
[9] Du J, Wang C, Wang K, Chen K. Intermetallics, 2014; 45: 80
[10] Chen X H, Ren X P, Xu H, Tong J G, Zhang H Y. Int J Min Met Mater, 2012; 19: 518
[11] Zanotto F, Grassi V, Merlin M, Balbo A, Zucchi F. Corros Sci, 2015; 94: 38
[12] Lacerda J C, Candido L C, Godefroid L B. Int J Fatigue, 2015; 74: 81
[13] Migiakis K, Papadimitriou G D. J Mater Sci, 2009; 44: 6372
[14] Elsabbagh F M, Hamouda R M, Taha M A. J Mater Eng Perform, 2014; 23: 275
[15] Xiang H L, He F S, Liu D. Acta Metall Sin, 2009; 45: 1456 (向红亮, 何福善, 刘 东. 金属学报, 2009; 45: 1456)
[16] Udayakumar T, Raja K, Afsal Husain T M, Sathiya P. Mater Des, 2014; 53: 226
[17] de Messano L V R, Sathler L, Reznik L Y, Coutinho R. Int Biodeter Biodegr, 2009; 63: 607
[18] Chen W, Wang X Y, Wang D Y, Zhang H G. Heat Treat, 2013; (3): 45 (陈 炜, 王晓燕, 王冬颖, 张会国. 热处理, 2013; (3): 45)
[19] Yan K R. Metall Collections, 1994; (1): 28 (颜宽然. 冶金丛刊, 1994; (1): 28)
[20] Li R S, Wang Z Y. Acta Metall Sin, 1994; 30: 477 (李仁顺, 王佐义. 金属学报, 1994; 30: 477)
[21] Xiang H L, Huang W L, Liu D, He F S. Acta Metall Sin, 2010; 46: 304 (向红亮, 黄伟林, 刘 东, 何福善. 金属学报, 2010; 46: 304)
[22] Garfias-Mesias L F, Sykes J M, Tuck C D S. Corros Sci, 1996; 38: 1319
[23] Yong Q L. Secondary Phases in Steels. Beijing: Metallurgy Industry Press, 2006: 7 (雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 7)
[24] Zhao J L, Xiao X S, Xu M H, Fang J X, Li J, Li M. Shanghai Steel Iron Res, 2006; (3): 33 (赵钧良, 肖学山, 徐明华, 方静贤, 李 钧, 李 明. 上海钢研, 2006; (3): 33)
[25] Comer A, Looney L. Int J Fatigue, 2006; 28: 826
[1] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[2] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[3] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[4] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[5] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[6] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[7] 巩向鹏, 伍翠兰, 罗世芳, 沈若涵, 鄢俊. 自然时效对Al-2.95Cu-1.55Li-0.57Mg-0.18Zr合金160℃人工时效的影响[J]. 金属学报, 2023, 59(11): 1428-1438.
[8] 李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.
[9] 刘续希, 柳文波, 李博岩, 贺新福, 杨朝曦, 恽迪. 辐照条件下Fe-Cu合金中富Cu析出相的临界形核尺寸和最小能量路径的弦方法计算[J]. 金属学报, 2022, 58(7): 943-955.
[10] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[11] 袁波, 郭明星, 韩少杰, 张济山, 庄林忠. 添加3%ZnAl-Mg-Si-Cu合金非等温时效析出行为的影响[J]. 金属学报, 2022, 58(3): 345-354.
[12] 唐帅, 蓝慧芳, 段磊, 金剑锋, 李建平, 刘振宇, 王国栋. 铁素体区等温过程中Ti-Mo-Cu微合金钢中的共析出行为[J]. 金属学报, 2022, 58(3): 355-364.
[13] 韩汝洋, 杨庚蔚, 孙新军, 赵刚, 梁小凯, 朱晓翔. 钒微合金化中锰马氏体耐磨钢奥氏体晶粒长大行为[J]. 金属学报, 2022, 58(12): 1589-1599.
[14] 孙士杰, 田艳中, 张哲峰. 析出强化Fe53Mn15Ni15Cr10Al4Ti2C1 高熵合金强韧化机制[J]. 金属学报, 2022, 58(1): 54-66.
[15] 薛克敏, 盛杰, 严思梁, 田文春, 李萍. 模压变形中国低活化马氏体钢沉淀相对其力学性能的影响[J]. 金属学报, 2021, 57(7): 903-912.