Please wait a minute...
金属学报  2015, Vol. 51 Issue (8): 957-966    DOI: 10.11900/0412.1961.2014.00703
  本期目录 | 过刊浏览 |
定向凝固高Nb含量TiAl合金微观组织演化与溶质偏析规律*
李勇1,刘国怀1,王昭东1,付天亮1,李新中2,苏彦庆2,郭景杰2,傅恒志2
2 哈尔滨工业大学材料科学与工程学院, 哈尔滨 150001
MICROSTRUCTURE EVOLUTION AND SOLUTE SEGREGATION IN DIRECTIONALLY SOLIDIFIED TiAl ALLOYS WITH HIGH Nb CONTENT
Yong LI1,Guohuai LIU1,Zhaodong WANG1,Tianliang FU1,Xinzhong LI2,Yanqing SU2,Jingjie GUO2,Hengzhi FU2
1 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
2 School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001
引用本文:

李勇,刘国怀,王昭东,付天亮,李新中,苏彦庆,郭景杰,傅恒志. 定向凝固高Nb含量TiAl合金微观组织演化与溶质偏析规律*[J]. 金属学报, 2015, 51(8): 957-966.
Yong LI, Guohuai LIU, Zhaodong WANG, Tianliang FU, Xinzhong LI, Yanqing SU, Jingjie GUO, Hengzhi FU. MICROSTRUCTURE EVOLUTION AND SOLUTE SEGREGATION IN DIRECTIONALLY SOLIDIFIED TiAl ALLOYS WITH HIGH Nb CONTENT[J]. Acta Metall Sin, 2015, 51(8): 957-966.

全文: PDF(10575 KB)   HTML
摘要: 

在Bridgman定向凝固炉中对Ti-46Al-(8, 9, 10)Nb合金进行定向凝固实验, 研究了生长速率和Nb含量对TiAl-Nb合金的微观组织、相变路径以及溶质偏析的影响, 获得了定向凝固TiAl-Nb合金相变过程与微观组织选择图. 结果表明, 生长速率的增加使得固/液界面发生了平界面-胞状界面-枝晶界面转变, 并促进完全b相凝固转变为具有L+ba包晶反应凝固过程, 最终组织由a2/g层片组织转变为具有a2/g层片和B2相的多相组织. 溶质Nb的添加对b相具有稳定作用, 促进了完全b相凝固过程的发生以及a2/g层片和B2相多相组织的形成. 生长速率和Nb含量对相变过程和微观组织的影响与溶质偏析(S型偏析, b型偏析)过程密切相关. 其中S型偏析程度的提高有利于促进包晶反应的发生, 从而导致最终组织发生严重的溶质偏析以及大量B2相在枝晶心部的集中分布. b型偏析中溶质Nb在残余b相中的富集是形成B2相的主要来源, Nb的富集程度直接决定了B2相的形态和尺寸. 根据关于生长速率和Nb含量的Ti-46Al合金相变过程和微观组织选择图可知, 选择较高的Nb含量和较低的冷却速率能获得完全b相凝固过程, 可以得到组织分布均匀、溶质偏析程度较低的定向凝固组织.

Abstract

TiAl-Nb alloys have been determined as the advanced direction for the development of the high temperature TiAl alloys, so being one of the advanced materials for turbines of aircraft engines and gas-burning power-generation plants. However, highly-Nb addition can lead to the complex solidification behavior of TiAl-Nb alloy and multi-phase microstructure, which is important for the mechanical properties during the alloy design. Bridgman type directional solidification experiments were conducted for Ti-46Al-(8, 9, 10)Nb alloy. The effect of the growth rate and Nb content on the microstructure, phase transition and microsegregation was investigated, and finally the selection diagram of the phase transition and the microstructure of the directional solidified TiAl-Nb alloy were obtained. The results show that the planar-cellular-dendritic evolution of solid-liquid interface can be observed with the increase of the growth rate. Meanwhile the fully b phase solidification changes to the peritectic solidification with the increase of the growth rate, and correspondingly the final microstructure is composed of the a2/g lamellar structure and a multiphase microstructure (B2 phase, a2/g lamellar structure) respectively. The increase of the b-stabilizer Nb content can promote the fully b phase solidification and the formation of the multiphase microstructure (B2 phase, a2/g lamellar structure). The contribution of the growth rate and the Nb content to the phase transition and the microstructure is connected with the solute segregation (S-segregation, b-segregation) closely. The increase of the S-segregation amplitude can easily promote the peritectic reaction, which always leads to the highly solute segregation and the concentrated distribution of plenty of B2 phase in the core of the dendrite. b-segregation is the mainly origin of the B2 phase formation, in which the Nb enrichment in the retained b phase directly determines the morphology and the dimension of the B2 phase. Finally according to the selection diagram of the solidification process and the microstructure of the Ti-46Al alloy with the growth rate and the Nb content, the high Nb content and the low growth rate during fully b solidification should be selected for the prefer microstructure with the homogeneous distribution and the low solute segregation.

Key wordsTiAl-Nb alloy    directional solidification    microstructure    solute segregation
    
基金资助:* 国家自然科学基金项目51071062, 51274077和51271068, 中央高校基本科研业务费项目N140703003和中国博士后科学基金项目2014M561245资助
图1  定向凝固Ti-46Al合金在不同生长速率和Nb含量下的固/液界面形态
图2  定向凝固Ti-46Al-Nb合金显微组织、XRD谱及B2相分布特征
Phase Ti Al Nb
g 42.23 49.62 8.15
a2 47.61 44.75 7.64
B2 42.23 42.34 15.43
表1  定向凝固Ti-46Al-8Nb合金中组成相的成分分析
图3  定向凝固Ti-46Al-Nb合金在不同生长速率和Nb含量下的宏观组织以及相应的微观组织
图4  定向凝固Ti-46Al-8Nb合金中不同相变过程中的溶质偏析特征和EDS
图5  定向凝固Ti-46Al-Nb合金不同相变路径下溶质偏析及微观组织演化
图6  定向凝固Ti-46Al-Nb 合金相变过程和微观组织选择图
[1] Loria E A. Intermetallics, 2000; 8: 1339
[2] Luo W Z, Shen J, Li Q L, Man W W, Fu H Z. Acta Metall Sin, 2007; 43: 897 (罗文忠, 沈 军, 李庆林, 满伟伟, 傅恒志. 金属学报, 2007; 43: 897)
[3] Dimiduk D M. Mater Sci Eng, 1999; A263: 281
[4] Chen Y Y, Kong F T. Acta Metall Sin, 2008; 44: 551 (陈玉勇, 孔凡涛. 金属学报, 2008; 44: 551)
[5] Li X Z, Fan J L, Su Y Q, Liu D M, Guo J J, Fu H Z. Intermetallics, 2012; 27: 38
[6] Wu X. Intermetallics, 2006; 14: 1114
[7] Li H Z, Li Z, Zhang W, Wang Y, Liu Y, Wang H J. J Alloys Compd, 2010; 508: 359
[8] Wang Y H, Lin J P, He Y H, Wang Y L, Chen G L. J Alloys Compd, 2008; 456: 297
[9] Chen G L, Wang X T, Ni K Q, Hao S M, Cao J X, Zhang X. Intermetallics, 1996; 4: 13
[10] Chen G L, Sun Z Q, Zhou X. Corros Sci, 1992; 11: 939
[11] Nakamura H, Takeyama M, Yamabe Y, Kikuchi M. Scr Mater, 1993; 28: 997
[12] Leonard K J, Vasudevan V K. Intermetallics, 2000; 8: 1257
[13] Chen G L, Zhang W J, Liu Z C, Li S J, Kim Y W. Gamma Titanium Aluminizes 1999. Lerotto: TMS, 1999: 371
[14] Liu G H, Li X Z, Su Y Q, Liu D M, Guo J J, Fu H Z. J Alloys Compd, 2012; 541: 275
[15] Chen G L, Xu X J, Teng Z K, Wang Y L, Lin J P. Intermetallics, 2007; 15: 625
[16] Ding X F, Lin J P, Zhang L Q, Wang H L, Hao G J, Chen G L. J Alloys Compd, 2010; 506: 115
[17] Perdrix F, Trichrt M F, Bonnentien J L, Cornet M, Bigot J. Intermetallics, 1999; 7: 1323
[18] Ding X F, Lin J P, Zhang L Q, Song X P, Chen G L. Mater Des, 2011; 32: 395
[19] Clemens H, Kestler H. Adv Eng Mater, 2000; 2: 551
[20] Imayev R M, Imayev V M, Oehring M. Intermetallics, 2007; 15: 451
[21] Niu H Z, Chen Y Y, Xiao S L, Xu L J. Intermetallics, 2012; 31: 225
[22] Yu R, He L L, Cheng Z Y, Zhu J, Ye H Q. Intermetallics, 2002; 10: 661
[23] Trivedi R. J Cryst Growth, 1980; 49: 219
[24] Kerr H W, Cisse J, Bolling G F. Acta Metall, 1974; 22: 677
[25] Kim M C, Oh M H, Lee J H, Inui H, Yamaguchi M, Wee D M. Mater Sci Eng, 1997; A239-240: 570
No related articles found!