Please wait a minute...
金属学报  2015, Vol. 51 Issue (5): 553-560    DOI: 10.11900/0412.1961.2014.00470
  论文 本期目录 | 过刊浏览 |
回火时间对高Ti微合金化淬火马氏体钢组织及力学性能的影响*
张可1,2,孙新军2(),雍岐龙2,李昭东2,杨庚蔚3,李员妹1,2
1 昆明理工大学材料科学与工程学院, 昆明 650093
2 钢铁研究总院工程用钢研究所, 北京 100081
3 武汉科技大学材料与冶金学院, 武汉 430081
EFFECT OF TEMPERING TIME ON MICROSTRUC- TURE AND MECHANICAL PROPERTIES OF HIGH Ti MICROALLOYED QUENCHED MARTENSITIC STEEL
Ke ZHANG1,2,Xinjun SUN2(),Qilong YONG2,Zhaodong LI2,Gengwei YANG3,Yuanmei LI1,2
1 School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093
2 Institute of Structural Steels, Central Iron and Steel Research Institute, Beijing 100081
3 School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081
引用本文:

张可, 孙新军, 雍岐龙, 李昭东, 杨庚蔚, 李员妹. 回火时间对高Ti微合金化淬火马氏体钢组织及力学性能的影响*[J]. 金属学报, 2015, 51(5): 553-560.
Ke ZHANG, Xinjun SUN, Qilong YONG, Zhaodong LI, Gengwei YANG, Yuanmei LI. EFFECT OF TEMPERING TIME ON MICROSTRUC- TURE AND MECHANICAL PROPERTIES OF HIGH Ti MICROALLOYED QUENCHED MARTENSITIC STEEL[J]. Acta Metall Sin, 2015, 51(5): 553-560.

全文: PDF(5388 KB)   HTML
摘要: 

利用TEM, XRD和Vickers硬度计等研究了回火时间对高Ti微合金化马氏体钢组织及力学性能的影响, 阐明了高Ti微合金化马氏体钢在回火过程中析出强化和组织软化之间的交互作用规律. 结果表明, 高Ti钢在600 ℃不同时间回火, 硬度表现出不同的趋势. 10~300 s回火, 硬度不断升高, 是由于TiC的析出强化作用远大于基体回复而导致的软化作用; 300 s~10 h回火, 硬度保持长时间的平台, 是由于细小TiC粒子的不断析出, 且5 nm以下的粒子所占比例提高, 不断增加的细小TiC粒子所产生的强化抵消了由于基体组织软化导致的硬度下降; 10~20 h回火, 硬度快速降低, 且降低速率高于不含Ti钢, TiC粒子的平均尺寸由10 h的2.76 nm粗化到20 h的3.15 nm. 计算表明, TiC粒子的粗化引起硬度降低11.94 HV, 基体软化引起硬度降低24.56 HV, 表明基体软化是硬度降低的主要因素, 而TiC粒子的粗化加速了高Ti钢硬度的降低, 是导致硬度降低的又一重要因素.

关键词 回火时间硬度TiC粗化马氏体板条    
Abstract

With the development of Ti microalloying technology, the application and theory research of Ti in microalloyed steels are becoming more deeply and widely. However, the effect of tempering time on the microstructure and mechanical properties of high Ti microalloyed quenched martensitic steel has been rarely touched upon, meanwhile, it has long been inconclusive whether precipitated phases coarsening or the recovery and softening of martensitic matrix is the dominant role resulting in the decrease of hardness along with long time tempering of microalloyed steel. In this work, the effect of tempering time on the microstructure and mechanical properties of high Ti microalloyed quenched steel was systemactically investigated by TEM, XRD and Vickers-hardness test, and the interaction between precipitation hardening and microstructural softening of the high Ti microalloyed steel was also studied. The results indicate that the hardness increases for Ti microalloyed steel with tempering time 10~300 s, which is attributed to the fact that the precipitation hardening by nano-sized TiC particles is greater than the recovery and softening of matrix. With the tempering time from 300 s to 10 h, nano-sized TiC particles precipitate more and more and the mass fraction of TiC with the size less than 5 nm increases, owning to the precipitation hardening produced by tiny TiC which offsets the hardness decrease due to the gradual softening with recovery of matrix, and therefore, the hardness can keep a long platform; in addition, with the tempering time 10~20 h, the hardness decreases significantly and the deacreasing rate of hardening for steel with Ti microalloying is higher than that for steel without Ti microalloying. The average particle size of TiC increases from 2.76 nm at 10 h to 3.15 nm at 20 h. Calculation results show that the decrease of hardness caused by coarsening of TiC is 11.94 HV, while caused by recovery of matrix is 24.56 HV. It is shown that the recovery of matrix is the dominating factor for reduction in hardness, but coarsening of tiny TiC speeds the decrease of hardness and is also an important factor resulting in the decrease of hardness.

Key wordstempering time    hardness    TiC    coarsening    martensite lath
收稿日期: 2014-08-25     
基金资助:* 国家自然科学基金项目51201036 和国家科技支撑计划项目2013BAE07B05 资助
作者简介: 张可, 男, 1983 年生, 博士生
Steel C Si Mn Ti P S N AIs
1 0.06 0.23 1.73 - 0.01 0.006 0.006 -
2 0.07 0.25 1.77 0.17 0.01 0.006 0.006 0.030
表1  实验钢的化学成分
图1  2种钢在600 ℃回火不同时间后的硬度变化
图2  2号钢回火不同时间后TiC粒子的尺寸分布
图3  2号钢回火10和20 h后小于5 nm的TiC粒子的分布
图4  2号钢回火不同时间后的TEM像和EDS分析
图5  2号钢回火不同时间后的TEM像
图6  1号钢回火不同时间后的TEM像
[1] Spcich G R, Leslie W C. Metall Trans, 1972; 3A: 1043
[2] Engel E H. Trans Am Soc Met, 1939; 27: 1
[3] Hollomon J H, Jaffe L D. Trans AIME, 1945; 162: 223
[4] Murphy S, Woodhead J H. Metall Trans, 1972; 3: 727
[5] Guo C S. Acta Metall Sin, 1999; 35: 865 (郭从盛. 金属学报, 1999; 35: 865)
[6] Zhang Z P, Qi Y H, Delagnes D, Bernhart G. Trans Mater Heat Treat, 2004; 25(1): 41 (张占平, 齐育红, Delagnes D, Bernhart G. 材料热处理学报, 2004; 25(1): 41)
[7] Zou Q H. Heat Treat Met, 1994; (3): 41 (邹庆化. 金属热处理, 1994; (3): 41)
[8] Grange R A, Hribal C R, Porter L R. Metall Trans, 1977; 8A: 1775
[9] Caron R N, Krauss G. Metall Trans, 1972; 3A: 2381
[10] Takaki S, Iizuka S, Tomimura K, Tokunage Y. Mater Trans JIM, 1991; 32: 207
[11] Zhong P, Ling B, Gu B Z. Spec Steel, 1996; 17(4): 23 (钟 平, 凌 斌, 古宝珠. 特殊钢, 1996; 17(4): 23)
[12] Liu Q D, Liu W Q, Peng J C. Trans Mater Heat Treat, 2008; 29(4): 118 (刘庆东, 刘文庆, 彭剑超. 材料热处理学报, 2008; 29(4): 118)
[13] Liu Q D, Liu W Q, Wang Z M, Zhou B X. Acta Metall Sin, 2009; 45: 1281 (刘庆东, 刘文庆, 王泽民, 周邦新. 金属学报, 2009; 45: 1281)
[14] Liu Q D, Peng J C, Liu W Q, Zhou B X. Acta Metall Sin, 2009; 45: 1288 (刘庆东, 彭剑超, 刘文庆, 周邦新. 金属学报, 2009; 45: 1288)
[15] Liu Q D, Chu Y L, Peng J C, Liu W Q, Zhou B X. Acta Metall Sin, 2009; 45: 1297 (刘庆东, 褚于良, 彭剑超, 刘文庆, 周邦新. 金属学报, 2009; 45: 1297)
[16] Xu F Y, Bai B Z, Fang H S. Heat Treat Met, 2007; 32(12): 29 (许峰云, 白秉哲, 方鸿生. 金属热处理, 2007; 32(12): 29)
[17] Zhou J L, Huang G, Xiang S, Pan C G, Lai C M, Hu T G. Spec Steel, 2014; 35(3): 49 (周家林, 黄 高, 向 上, 潘成钢, 赖春明, 胡唐国. 特殊钢, 2014; 35(3): 49)
[18] Wang Z Q. PhD Dissertation, Tsinghua University, Beijing, 2013 (王振强. 清华大学博士学位论文, 北京, 2013)
[19] Wang M, Li L F, Sun Z Q, Yang W Y. Acta Metall Sin, 2007; 43: 1009 (王 猛, 李龙飞, 孙祖庆, 杨王玥. 金属学报, 2007; 43: 1009)
[20] Tsuchiyama T, Miyamoto Y, Takaki S. ISI Int, 2001; 41: 1047
[21] Tokizane M, Matsumura N, Tsuzaki K, Maki T, Tamura I. Metall Trans, 1982; 13A: 1379
[22] Maki T, Tamura I. Trans ISIJ, 1981; 67: 852
[23] Yong Q L. Secondary Phases in Steels. Beijing: Metallurgical Industry Press, 2006: 415 (雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 415)
[24] Funakawa Y, Shiozaki T, Tomita K, Yamamoto T, Maeda E. ISIJ Int, 2004; 44: 1945
[25] Pavlina E J, Van Type C J. J Mater Eng Perform, 2008; 17: 888
[26] Kesternich W. Philos Mag, 1985; 52: 533
[1] 王海峰, 张志明, 牛云松, 杨延格, 董志宏, 朱圣龙, 于良民, 王福会. 前置渗氧对TC4钛合金低温等离子复合渗层微观结构和耐磨损性能的影响[J]. 金属学报, 2023, 59(10): 1355-1364.
[2] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[3] 王韬, 龙弟均, 余黎明, 刘永长, 李会军, 王祖敏. 超高压烧结制备14Cr-ODS钢及微观组织与力学性能[J]. 金属学报, 2022, 58(2): 184-192.
[4] 项兆龙, 张林, XIN Yan, 安佰灵, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, 王恩刚. Cr含量对FeCrCoSi永磁合金调幅分解组织及其性能的影响[J]. 金属学报, 2022, 58(1): 103-113.
[5] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[6] 曹庆平, 吕林波, 王晓东, 蒋建中. 物理气相沉积制备金属玻璃薄膜及其力学性能的样品尺寸效应[J]. 金属学报, 2021, 57(4): 473-490.
[7] 张林, 郭晓, 高建文, 邓安元, 王恩刚. 电磁搅拌对TiB2颗粒增强钢组织和力学性能的影响[J]. 金属学报, 2020, 56(9): 1239-1246.
[8] 童文辉, 张新元, 李为轩, 刘玉坤, 李岩, 国旭明. 激光工艺参数对TiC增强钴基合金激光熔覆层组织及性能的影响[J]. 金属学报, 2020, 56(9): 1265-1274.
[9] 孙新军,刘罗锦,梁小凯,许帅,雍岐龙. 高钛耐磨钢中TiC析出行为及其对耐磨粒磨损性能的影响[J]. 金属学报, 2020, 56(4): 661-672.
[10] 邓聪坤,江鸿翔,赵九洲,何杰,赵雷. Ag-Ni偏晶合金凝固过程研究[J]. 金属学报, 2020, 56(2): 212-220.
[11] 许帅, 孙新军, 梁小凯, 刘俊, 雍岐龙. 热轧变形量对高钛耐磨钢组织与力学性能的影响[J]. 金属学报, 2020, 56(12): 1581-1591.
[12] 刘艳梅, 王铁钢, 郭玉垚, 柯培玲, 蒙德强, 张纪福. Ti-B-N纳米复合涂层的设计、制备及性能[J]. 金属学报, 2020, 56(11): 1521-1529.
[13] 刘海霞, 陈金豪, 陈杰, 刘光磊. NaCl溶液腐蚀后304不锈钢的射流空蚀特征[J]. 金属学报, 2020, 56(10): 1377-1385.
[14] 董虎林,包海萍,彭建洪. TiC含量对铁基复合材料力学性能及耐磨性能的影响[J]. 金属学报, 2019, 55(8): 1049-1057.
[15] 李博,张忠铧,刘华松,罗明,兰鹏,唐海燕,张家泉. 高强耐蚀管钢点状偏析及带状缺陷的特征与演变[J]. 金属学报, 2019, 55(6): 762-772.