Please wait a minute...
金属学报  2015, Vol. 51 Issue (6): 668-676    DOI: 10.11900/0412.1961.2014.00523
  论文 本期目录 | 过刊浏览 |
强制对流搅拌流变压铸AZ91D镁合金的组织与性能*
祁明凡,康永林(),周冰,朱国明,张欢欢
北京科技大学材料科学与工程学院, 北京 100083
MICROSTRUCTURES AND PROPERTIES OF AZ91D MAGNESIUM ALLOY PRODUCED BY FORCED CONVECTION MIXING RHEO-DIECASTING PROCESS
Mingfan QI,Yonglin KANG(),Bing ZHOU,Guoming ZHU,Huanhuan ZHANG
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
引用本文:

祁明凡, 康永林, 周冰, 朱国明, 张欢欢. 强制对流搅拌流变压铸AZ91D镁合金的组织与性能*[J]. 金属学报, 2015, 51(6): 668-676.
Mingfan QI, Yonglin KANG, Bing ZHOU, Guoming ZHU, Huanhuan ZHANG. MICROSTRUCTURES AND PROPERTIES OF AZ91D MAGNESIUM ALLOY PRODUCED BY FORCED CONVECTION MIXING RHEO-DIECASTING PROCESS[J]. Acta Metall Sin, 2015, 51(6): 668-676.

全文: PDF(8320 KB)   HTML
摘要: 

依据强制对流搅拌原理, 成功自主研制出强制对流搅拌(FCM)制浆设备, 并与压铸机相结合, 以AZ91D镁合金力学拉伸件为例, 实现了浆料制备、输送到成形的一体化流变压铸过程; 研究了不同FCM工艺参数下流变压铸件组织特征的演变; 对比了不同工艺下压铸件力学性能的差异; 并分析了FCM流变压铸工艺组织形成机理及凝固行为. 结果表明: FCM工艺参数对铸件的显微组织有较大影响, 适当提高螺杆转速或降低筒体温度, 均有利于成形件组织形貌的改善; FCM流变压铸工艺不仅可以获得内部组织细小、圆整且分布均匀的成形件, 而且可以显著提高成形件的力学性能; 与传统压铸件相比, FCM流变压铸件的屈服强度变化不大, 抗拉强度和延伸率分别提高了12.5%和80.0%; 与经T4和T6热处理的铸件相比, 铸态拉伸件的抗拉强度最低, 屈服强度和伸长率介于T4和T6之间.

关键词 AZ91D镁合金强制对流搅拌流变压铸组织演变力学性能热处理    
Abstract

Based on the forced convection mixing (FCM) principle, a self-developed FCM semisolid slurry preparation device was successfully developed. Taking AZ91D magnesium alloy tensile parts for example, the rheo-diecasting process that consists of slurry preparation, transportation and forming was achieved by combining with a diecasting machine. Microstructural characteristics of FCM rheo-diecasting parts in different processing parameters were investigated. Mechanical properties of AZ91D alloy parts in different processes were compared. Besides, the formation mechanism and solidification behavior of semisolid slurry were analyzed in FCM rheo-diecasting process. The results show that processing parameters have a great effect on the microstructures of parts, increasing rotation speed or decreasing barrel temperature appropriately is beneficial to optimizing the microstructure. The process not only can produce parts with fine, spherical and uniformly distributed primary a-Mg particles, but also is able to improve mechanical performance of parts significantly. Compared with traditional diecasting, the yield strength remains unchanged, but the ultimate strength and elongation are increased by 12.5% and 80.0%, respectively. Furthermore, compared with parts subjected to T4 and T6 heat treatment, the ultimate strength of the as-cast is the lowest, and the yield strength and elongation are between T4 and T6.

Key wordsAZ91D magnesium alloy    forced convection mixing (FCM)    rheo-diecasting    microstructure evolution    mechanical properties    heat treatment
    
基金资助:* 国家重点基础研究发展计划项目2011CB606302和国家高技术研究发展计划项目2013AA031001
图1  强制对流搅拌(FCM)设备结构图及FCM流变压铸流程示意图
图2  FCM流变压铸力学性能拉伸件示意图
图3  不同螺杆转速下AZ91D镁合金流变压铸件的OM像
图4  筒体温度560 ℃时不同螺杆转速下AZ91D镁合金流变压铸件的初生a-Mg晶粒的平均尺寸和形状因子
图5  不同筒体温度下AZ91D镁合金流变压铸件的OM像
图6  螺杆转速500 r/min时不同筒体温度下AZ91D镁合金流变压铸件的初生a-Mg晶粒的平均尺寸和形状因子
Process Yield strength / MPa Ultimate strength / MPa Elongation / %
Traditional diecasting 144 200 2.5
FCM rheo-diecasting 138 225 4.5
FCM rheo-diecasting+T4 99 240 8.5
FCM rheo-diecasting+T6 156 245 3.5
表1  不同工艺下AZ91D镁合金压铸件的力学性能
图7  T4和T6热处理后流变压铸拉伸件的SEM像
图8  不同工艺下AZ91D镁合金压铸件的断口形貌
图9  晶粒游离示意图
图10  传统压铸和FCM流变压铸工艺合金熔体的凝固冷却过程
[1] Jiang J F, Wang Y, Li Y F, Shan W W. Luo S J. Mater Des, 2012; 37: 202
[2] Mustafa K K. Int J Adv Manuf Technol, 2008; 39: 851
[3] Mordike B L, Ebert T. Mater Sci Eng, 2001; A302: 37
[4] Tzamtzis S, Zhang H, Xia M, Hari Babu N, Fan Z. Mater Sci Eng, 2011; A528: 2664
[5] Le Q C, Ou P, Wu Y D, Lu G M, Cui J Z, Qiu Z X. Acta Metall Sin, 2002; 38: 219 (乐启炽, 欧 鹏, 吴跃东, 路贵民, 崔建忠, 邱竹贤. 金属学报, 2002; 38: 219)
[6] Zhao Z D, Chen Q, Chao H Y, Huang S H. Mater Des, 2010; 31: 1906
[7] Jiang J F, Wang Y, Chen G, Liu J, Li Y F, Luo S J. Mater Des, 2012; 40: 541
[8] Polmear L J. Mater Trans, 1996; 37: 12
[9] Chul K J, Chung G K. Hydrogen Energy, 2012; 37: 1661
[10] Lai H Q, Xu X, Fan H X. Met Form Technol, 2004; 22(2): 12 (赖华清, 徐 翔, 范宏训. 金属成形工艺, 2004; 22(2): 12)
[11] Yang L Q, Kang Y L, Zhang F, Ding R H, Li J. Trans Nonferrous Met Soc China, 2010; 20: 966
[12] Fan Z, Fang X, Ji S. Mater Sci Eng, 2005; A412: 298
[13] Zhou B, Kang Y L, Zhang J, Gao J Z, Zhang F. Solid State Phenomena, 2013; 192-193: 422
[14] Tzamtzis S, Zhang H, Hari Babu N, Fan Z. Mater Sci Eng, 2010; A527: 2929
[15] Guo D Y, Yang Y S, Dong W H, Hua F A, Cheng G F, Hu Z Q. Acta Metall Sin, 2003; 39: 914 (郭大勇, 杨院生, 童文辉, 花福安, 程根发, 胡壮麒. 金属学报, 2003; 39: 914)
[16] Flemings M C. Metall Trans, 1991; 22A: 957
[17] Ohno A. Solidification-the Separation Theory and Its Practical Applications. Berlin: Springer-Verlag Press, 1987: 36
[18] Trivedi R. J Cryst Growth, 1980; 48: 93
[19] Zhang X L, Li T J, Xie S S. Chin J Nonferrous Met, 2011; 21: 1881 (张小立, 李廷举, 谢水生. 中国有色金属学报, 2011; 21: 1881)
[20] Minkoff I. Solidification and Cast Structure. Chichester: John Wiley & Sons Ltd, 1986: 79
[21] Molenaar J M M, Katgerman L, Kool W H. J Mater Sci, 1986; 21: 389
[22] Guo H M, Yang X J, Luo X Q. J Alloys Compd, 2009; 482: 412
[23] Doherty R D, Lee H I, Feest E A. Mater Sci Eng, 1984; A65: 181
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[11] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[12] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[13] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[14] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[15] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.