Please wait a minute...
金属学报  2015, Vol. 51 Issue (6): 651-658    DOI: 10.11900/0412.1961.2014.00680
  论文 本期目录 | 过刊浏览 |
一种高锰奥氏体TWIP钢的高温热变形与再结晶行为*
袁晓云,陈礼清()
东北大学轧制技术及连轧自动化国家重点实验室, 沈阳 110819
HOT DEFORMATION AT ELEVATED TEMPERATURE AND RECRYSTALLIZATION BEHAVIOR OF A HIGH MANGANESE AUSTENITIC TWIP STEEL
Xiaoyun YUAN,Liqing CHEN()
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
引用本文:

袁晓云, 陈礼清. 一种高锰奥氏体TWIP钢的高温热变形与再结晶行为*[J]. 金属学报, 2015, 51(6): 651-658.
Xiaoyun YUAN, Liqing CHEN. HOT DEFORMATION AT ELEVATED TEMPERATURE AND RECRYSTALLIZATION BEHAVIOR OF A HIGH MANGANESE AUSTENITIC TWIP STEEL[J]. Acta Metall Sin, 2015, 51(6): 651-658.

全文: PDF(9930 KB)   HTML
摘要: 

在变形温度为1223~1423 K及应变速率为0.01~10 s-1的条件下, 利用MMS-300热模拟试验机开展单道次压缩变形实验, 结合SEM-EBSD和TEM等观察分析技术, 研究了一种高锰奥氏体孪晶诱发塑性(TWIP)钢的高温热变形及再结晶行为, 对其动态再结晶过程中的组织演变规律及其与应力-应变曲线的相关性进行了分析和表征. 结果表明, 该高锰奥氏体TWIP钢的热变形行为对应变速率较敏感; 当应变速率低于0.1 s-1时, 热变形过程中发生动态再结晶; 当应变速率高于1 s-1时, 发生动态回复. 通过回归计算建立了该高锰奥氏体TWIP钢的热变形本构方程, 分析认为动态再结晶过程中的组织演变规律与其应力-应变曲线密切相关. 随着应变量的增加, 晶界迁移诱导再结晶形核; 形变量进一步增加, 产生大量亚晶界; 相邻亚晶界上的位错攀移和滑移等运动使晶界合并, 导致再结晶晶粒形成.

关键词 TWIP钢热变形动态再结晶本构方程组织演变    
Abstract

Stainless steel is widely used in both industrial production and daily-life due to its anti-corrosion behavior. In view of the shortage in Cr and Ni resources, there has been an increasing interest in developing low-cost stainless steels for several decades. Under the frame of replacing Ni and Cr with Mn and Al, respectively, a recent study indicates that Fe-Mn-Al-C austenitic twinning-induced plasticity (TWIP) steel possesses good comprehensive properties and excellent resistance to oxidation that make it potential in partially replacing conventional austenitic stainless steels. As a viable alternative to low-cost austenitic stainless steel, a new alloy system of high-manganese low-chromium nitrogen-containing TWIP steel was developed in this study. Considering its corrosion resistance, the alloy is not completely free of chromium, yet the Cr content is relatively low. Nitrogen is added, because it is a strong austenite stabilizer that can reduce the tendency to form ferrite and deformation-induced a'- and e-martensites, thereby reducing the amount of nickel required in austenitic stainless steel. Furthermore, nitrogen is beneficial for pitting corrosion resistance. In this study, hot deformation and recrystallization behaviors of this high manganese austenitic TWIP steel were investigated by single-pass compression tests on MMS-300 thermo-mechanical simulator at temperature ranging from 1223 K to 1423 K and strain rate ranging from 0.01 s-1 to 10 s-1. Microstructure evolution during dynamic recrystallization and the correlation of microstructure change to the stress-strain response were further analyzed by using TEM and SEM equipped with EBSD. The results show that the hot deformation behavior of this steel is more sensitive to deformation rate. Dynamic recrystallization occurs during hot deformation when deformation rate is lower than 0.1 s-1, while dynamic recovery takes place at deformation rate higher than 1 s-1. The hot deformation constitutive equation of the high manganese austenitic TWIP steel was established by regression analysis. There is a close correlation between microstructure evolution and stress-strain curve during dynamic recrystallization. With the increase of strain, the grain boundary migration leads to the nucleation of recrystallization. Sub-grain boundary was also formed with increasing the strain. Dislocations climbing or slipping on the adjacent sub-grain boundary lead to the grain boundary merging, and then, new austenitic grains formed.

Key wordsTWIP steel    hot deformation    dynamic recrystallization    constitutive equation    microstructure evolution
    
基金资助:*国家自然科学基金项目 51271051和51304045资助
图1  高锰奥氏体孪晶诱发塑性钢(TWIP钢)在不同变形条件下的真应力-真应变曲线
图2  高锰奥氏体孪晶诱发塑性钢(TWIP钢)在不同变形条件下的真应力-真应变曲线
图3  高锰奥氏体TWIP钢在时不同变形温度下的SEM像
图4  n值残差平方和随a的变化曲线
图5  峰值应力与应变速率和峰值应力与变形温度的关系
图6  lnZ与ln[sinh(as)]的关系曲线
图7  高锰奥氏体TWIP钢在1323 K及0.05 s-1的变形条件下不同应变量时晶界分布的EBSD图
图8  高锰奥氏体TWIP钢在1323 K及0.05 s-1的变形条件下不同真应变时动态再结晶组织的TEM像
[1] Wang C J, Chang Y C. Mater Chem Phys, 2002; 76: 151
[2] Gr?ssel O, Kruger L, Frommeyer G, Meyer L W. Int J Plast, 2000; 16: 1391
[3] Brüx U, Frommeyer G, Gr?ssel O, Meyer L W, Weise A. Steel Res Int, 2002; 73: 294
[4] Chen L Q, Zhao Y, Qin X M. Acta Metall Sin (Engl Lett), 2013; 26: 1
[5] Chung K, Ahn K, Yoo D H, Chung K H, Seo M H. Int J Plast, 2011; 27: 52
[6] Bouaziz O, Allain S, Scott C P, Cugy P, Barbier D. Curr Opin Solid State Mater Sci, 2011; 15: 141
[7] Barbier D, Gey N, Allain S, Bozzolo N, Humbert M. Mater Sci Eng, 2009; A500: 196
[8] Kibey S, Liu J B, Curtis M J, Johnson D D, Sehitoglu H. Acta Mater, 2006; 54: 2991
[9] Huang B X, Wang X D, Rong Y H. Mater Sci Eng, 2006; A438-440: 306
[10] Yuan X Y, Yao Y T, Chen L Q. Acta Metall Sin (Engl Lett), 2014; 27: 401
[11] Yuan X Y, Chen L Q, Zhao Y, Di H S, Zhu F X. J Mater Process Technol, 2015; 217: 278
[12] Ding H, Tang Z Y, Li W, Wang M, Song D. J Iron Steel Res, 2006; 13(6): 66
[13] Chen T H, Yang J R. Mater Sci Eng, 2001; A311: 28
[14] Zhang J Q, Di H S, Wang X Y, Cao Y, Zhang J C, Ma T J. Mater Des, 2013; 44: 354
[15] Zheng M Y, Wu K, Liang M, Kamado S, Kojima Y. Mater Sci Eng, 2004; A372: 66
[16] Li A B, Geng L, Zhang J, Xu H Y, Zheng Z Z, Yao C K. Mater Chem Phys, 2004; 84: 29
[17] Venugopal S, Mannan S L, Rodriguez P. J Mater Sci, 2004; 39: 5557
[18] Cao Y, Di H S, Zhang J C, Zhang J Q. Acta Metall Sin, 2012; 48: 1175 (曹 宇, 邸红双, 张洁岑, 张敬奇. 金属学报, 2012; 48: 1175)
[19] Wang Z X. Controlled Rolling and Controlled Cooling. Beijing: Metallurgical Industry Press, 1988: 14 (王占学. 控制轧制与控制冷却. 北京: 冶金工业出版社, 1988:14)
[20] McQueen H J, Ryan N D. Mater Sci Eng, 2002; A322: 43
[21] Chen L Q, Zhao Y, Xu Q X, Liu X H. Acta Metall Sin, 2010; 46: 1215 (陈礼清, 赵 阳, 徐秋香, 刘相华. 金属学报, 2010; 46: 1215)
[22] Medina S F, Hernadez C A. Acta Mater, 1996; 44: 137
[23] Liu Z Y, Chen L S, Zhou M C, Liu X H, Wang G D. J Iron Steel Res, 2004; 16(1): 49 (刘战英, 陈连生, 周满春, 刘相华, 王国栋. 钢铁研究学报, 2004; 16(1): 49)
[24] Yu J W, Liu X F, Xie J X. Acta Metall Sin, 2011; 47: 486 (余均武, 刘雪峰, 谢建新. 金属学报, 2011; 47: 486)
[25] Yue C X, Zhang L W, Liao S L, Pei J B, Gao H J, Jia Y W, Lian X J. Mater Sci Eng, 2007; A499: 177
[26] Fernández A I, Uranga P, López B, Rodriguez-Ibabe J M. Mater Sci Eng, 2003; A361: 367
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[4] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[5] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[6] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[7] 方远志, 戴国庆, 郭艳华, 孙中刚, 刘红兵, 袁秦峰. 激光摆动对激光熔化沉积钛合金微观组织及力学性能的影响[J]. 金属学报, 2023, 59(1): 136-146.
[8] 李钊, 江河, 王涛, 付书红, 张勇. GH2909低膨胀高温合金热处理中的组织演变行为[J]. 金属学报, 2022, 58(9): 1179-1188.
[9] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[10] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[11] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[12] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[13] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[14] 彭俊, 金鑫焱, 钟勇, 王利. 基板表层组织对Fe-16Mn-0.7C-1.5Al TWIP钢可镀性的影响[J]. 金属学报, 2022, 58(12): 1600-1610.
[15] 胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP[J]. 金属学报, 2022, 58(11): 1519-1526.