Please wait a minute...
金属学报  2015, Vol. 51 Issue (1): 93-99    DOI: 10.11900/0412.1961.2014.00402
  本期目录 | 过刊浏览 |
液-固电迁移Ni/Sn-9Zn/Ni焊点反极性效应研究
黄明亮(), 张志杰, 冯晓飞, 赵宁
大连理工大学材料科学与工程学院, 大连 116024
REVERSE POLARITY EFFECT IN Ni/Sn-9Zn/Ni INTERCONNECT UNDERGOING LIQUID- SOLID ELECTROMIGRATION
HUANG Mingliang(), ZHANG Zhijie, FENG Xiaofei, ZHAO Ning
School of Materials Science & Engineering, Dalian University of Technology, Dalian 116024
引用本文:

黄明亮, 张志杰, 冯晓飞, 赵宁. 液-固电迁移Ni/Sn-9Zn/Ni焊点反极性效应研究[J]. 金属学报, 2015, 51(1): 93-99.
Mingliang HUANG, Zhijie ZHANG, Xiaofei FENG, Ning ZHAO. REVERSE POLARITY EFFECT IN Ni/Sn-9Zn/Ni INTERCONNECT UNDERGOING LIQUID- SOLID ELECTROMIGRATION[J]. Acta Metall Sin, 2015, 51(1): 93-99.

全文: PDF(6517 KB)   HTML
摘要: 

研究了230 ℃, 5×103 A/cm2条件下液-固电迁移对Ni/Sn-9Zn/Ni线性焊点界面反应的影响. 在液-固电迁移过程中, Ni/Sn-9Zn/Ni焊点表现出明显的反极性效应, 即阴极界面金属间化合物(IMC)持续生长变厚, 并且一直厚于阳极界面IMC. 由于排除背应力的影响, Sn-9Zn液态钎料中Zn原子的反常迁移行为归因于其有效电荷数在高温下为正值, 即在电子风力作用下Zn原子向阴极界面定向迁移, 从而导致焊点在液-固电迁移过程中发生反极性效应. 回流焊后, Ni/Sn-9Zn/Ni焊点两侧界面上均生成了较薄的Ni5Zn21层. 液-固界面反应过程中(无电流)焊点两侧界面IMC均随时间延长而生长变厚, 从而消耗钎料中的Zn原子并使界面处的相平衡发生变化, 导致界面IMC由Ni5Zn21转变为[Ni5Zn21+(Ni, Zn)3Sn4]. 与之相较, 液-固电迁移过程中阴阳两极界面IMC的类型一直为Ni5Zn21, 并未发生IMC类型的转变. 这是由于, 在电子风力作用下, 阴极界面附近钎料中Zn原子的含量充足, Zn与Ni反应生成Ni5Zn21型IMC; 同时, 电子风力也阻碍了Zn原子向阳极界面的扩散, 从而抑制了阳极界面IMC的生长, 导致界面IMC较薄, 因此阳极界面也未发生IMC类型的转变. 此外, 运用反证法进一步验证了Zn的有效电荷数在高温下是正值.

关键词 反极性效应Sn-9Zn焊点电迁移界面反应金属间化合物    
Abstract

The effect of liquid-solid electromigration (EM) on the interfacial reaction in Ni/Sn-9Zn/Ni interconnects was investigated under a current density of 5×103 A/cm2 at 230 ℃. A reverse polarity effect was revealed, i.e., the interfacial intermetallic compounds (IMC) at the cathode grew continuously and was remarkably thicker than those at the anode. This results from the directional migration of Zn atoms from the anode toward the cathode, which is induced by the positive effective charge number (Z *) of Zn atoms but not the back-stress. A thin Ni5Zn21 layer formed at each interface after soldering. The initial Ni5Zn21 interfacial IMC gradually transformed into [Ni5Zn21+(Ni, Zn)3Sn4] after liquid-solid interfacial reaction for 8 h, due to the local equilibrium at the interface changed with decreasing of Zn atoms content. The interfacial IMCs at both anode and cathode were identified as Ni5Zn21, and no IMC transformation occurred undergoing liquid-solid EM, because the Zn atoms content at the cathode was enough under electron current stressing, and the diffusion of Zn atoms toward anode was inhibited. The reverse proving was proposed to explain the positive value Z * of Zn atoms. The abnormal directional migration of Zn atoms toward the cathode prevented the dissolution of cathode substrate, which is beneficial to improving the EM reliability of micro-bump solder interconnects.

Key wordsreverse polarity effect    Sn-9Zn solder    electromigration    interfacial reaction    intermetallic compound
    
ZTFLH:  TG115  
基金资助:*国家自然科学基金项目51475072和51171036资助
作者简介: null

黄明亮, 男, 1970年生, 教授

图1  Ni/Sn-9Zn/Ni线性焊点示意图
图2  Ni/Sn-9Zn/Ni焊点回流焊后的SEM像
图3  230 ℃下液-固界面反应(无电流)不同时间后Ni/Sn-9Zn/Ni焊点的SEM像
图4  230 ℃, 5.0×103 A/cm2条件下液-固电迁移不同时间后Ni/Sn-9Zn/Ni焊点的SEM像
图5  液-固电迁移过程中Ni/Sn-9Zn/Ni焊点阴阳两极界面上IMC厚度随时间的变化
图6  230 ℃, 5.0×103 A/cm2条件下液-固电迁移不同时间后Ni/Sn-9Zn/Ni整体焊点的SEM像
图7  Ni/Sn-9Zn/Ni焊点液-固电迁移过程中Zn原子的扩散通量示意图
[1] Hsiao H Y, Liu C M, Lin H W, Liu T C, Lu C L, Huang Y S, Chen C, Tu K N. Science, 2012; 336: 1007
[2] Huang M L, Zhou S M, Chen L D. J Electron Mater, 2012; 41: 730
[3] Chen C, Tong H M, Tu K N. Annu Rev Mater Res, 2010; 40: 531
[4] Huang M L, Ye S, Zhao N. J Mater Res, 2012; 26: 3009
[5] Blech I A, Meieran E S. Appl Phys Lett, 1967; 11: 263
[6] Chen S W, Chen C M, Liu W C. J Electron Mater, 1998; 27: 1193
[7] Chen C M, Chen S W. J Electron Mater, 1999; 28: 902.
[8] Gan H, Tu K N. In: Scott N ed., Proceedings IEEE 52nd Electronic Components and Technology Conference (ECTC 2002), San Diego: IEEE, 2002: 1206
[9] Zhang X F, Guo J D, Shang J K. Scr Mater, 2007; 57: 513
[10] Zhang X F, Guo J D, Shang J K. J Mater Res, 2008; 23: 3370
[11] Huang M L, Zhou Q, Zhao N, Liu X Y. J Mater Sci, 2014; 49: 1755
[12] Huang M L, Zhou Q, Zhao N, Zhang Z J. J Electron Mater, 2013; 42: 2975
[13] Huang M L, Zhang Z J, Zhao N, Zhou Q. Scr Mater, 2013; 68: 853
[14] Huang M L, Zhang Z J, Zhao N, Yang F. J Alloys Compd, 2014; doi: 10.1016/j.jallcom.2014.08.263
[15] Liou W K, Yen Y W, Jao C C. J Electron Mater, 2009; 38: 2222
[16] Wang C H, Chen H H. J Electron Mater, 2010; 39: 2375
[17] Huntington H B, Grone A R. J Phys Chem Solids, 1961; 20: 76
[18] Ho P S, Kwok T. Rep Prog Phys, 1989; 52: 301
[19] Blech I A. J Appl Phys, 1976; 47: 1203
[20] Tu K N. Phys Rev, 1992; 45B: 1409
[21] Smolin M D, Frantsevich I N. Sov Phys-Sol, 1962; 3: 1536
[1] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.
[2] 宋庆忠, 潜坤, 舒磊, 陈波, 马颖澈, 刘奎. 镍基高温合金K417G与氧化物耐火材料的界面反应[J]. 金属学报, 2022, 58(7): 868-882.
[3] 丁宗业, 胡侨丹, 卢温泉, 李建国. 基于同步辐射X射线成像液/固复层界面氢气泡的形核、生长演变与运动行为的原位研究[J]. 金属学报, 2022, 58(4): 567-580.
[4] 周丽君, 位松, 郭敬东, 孙方远, 王新伟, 唐大伟. 基于飞秒激光时域热反射法的微尺度Cu-Sn金属间化合物热导率研究[J]. 金属学报, 2022, 58(12): 1645-1654.
[5] 王超, 张旭, 王玉敏, 杨青, 杨丽娜, 张国兴, 吴颖, 孔旭, 杨锐. SiCf/Ti65复合材料界面反应与基体相变机理[J]. 金属学报, 2020, 56(9): 1275-1285.
[6] 张志杰, 黄明亮. 原位研究Cu/Sn-37Pb/Cu微焊点液-固电迁移行为[J]. 金属学报, 2020, 56(10): 1386-1392.
[7] 宫声凯, 尚勇, 张继, 郭喜平, 林均品, 赵希宏. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(9): 1067-1076.
[8] 吉华,邓运来,徐红勇,郭伟强,邓建峰,范世通. 焊接线能量对5182-O/HC260YD+Z异种材料CMT搭接接头组织与性能的影响[J]. 金属学报, 2019, 55(3): 376-388.
[9] 陈丽群, 邱正琛, 于涛. Ru对NiAl[100](010)刃型位错电子结构的影响[J]. 金属学报, 2019, 55(2): 223-228.
[10] 曹丽华, 陈胤伯, 史起源, 远杰, 刘志权. 合金元素对中温Sn-Ag-Cu焊料互连组织及剪切强度的影响[J]. 金属学报, 2019, 55(12): 1606-1614.
[11] 冯业飞,周晓明,邹金文,王超渊,田高峰,宋晓俊,曾维虎. 粉末高温合金中SiO2夹杂物与基体的界面反应机理及对其变形行为的影响[J]. 金属学报, 2019, 55(11): 1437-1447.
[12] 何贤美, 童六牛, 高成, 王毅超. Nd含量对磁控溅射Si(111)/Cr/Nd-Co/Cr薄膜结构与磁性的影响[J]. 金属学报, 2019, 55(10): 1349-1358.
[13] 邱丰, 佟昊天, 沈平, 丛晓霜, 王轶, 姜启川. 综述:SiC/Al界面反应与界面结构演变规律及机制[J]. 金属学报, 2019, 55(1): 87-100.
[14] 黄明亮, 孙洪羽. 倒装芯片无铅凸点β-Sn晶粒取向与电迁移交互作用[J]. 金属学报, 2018, 54(7): 1077-1086.
[15] 张敏, 慕二龙, 王晓伟, 韩挺, 罗海龙. TA1/Cu/X65复合板焊接接头微观组织及力学性能[J]. 金属学报, 2018, 54(7): 1068-1076.