Please wait a minute...
金属学报  2015, Vol. 51 Issue (1): 49-56    DOI: 10.11900/0412.1961.2014.00272
  本期目录 | 过刊浏览 |
铁基非晶涂层在NaCl和H2SO4溶液中的钝化行为
王勇1,2, 郑玉贵3, 王建强4, 李美玲5, 沈军1()
1 同济大学材料科学与工程学院, 上海 201084
2 东北石油大学机械科学与工程学院, 大庆 163318
3 中国科学院金属研究所核用材料与安全评价重点实验室, 沈阳 110016
4 中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳 110016
5 鞍山师范学院物理系, 鞍山 114001
PASSIVATION BEHAVIOR OF Fe-BASED AMORPHOUS METALLIC COATING IN NaCl AND H2SO4 SOLUTIONS
WANG Yong1,2, ZHENG Yugui3, WANG Jianqiang4, LI Meiling5, SHEN Jun1()
1 School of Materials Science and Engineering, Tongji University, Shanghai 201084
2 School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318
3 Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
4 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
5 Physics Department, Anshan Normal College, Anshan 114001
引用本文:

王勇, 郑玉贵, 王建强, 李美玲, 沈军. 铁基非晶涂层在NaCl和H2SO4溶液中的钝化行为[J]. 金属学报, 2015, 51(1): 49-56.
Yong WANG, Yugui ZHENG, Jianqiang WANG, Meiling LI, Jun SHEN. PASSIVATION BEHAVIOR OF Fe-BASED AMORPHOUS METALLIC COATING IN NaCl AND H2SO4 SOLUTIONS[J]. Acta Metall Sin, 2015, 51(1): 49-56.

全文: PDF(3149 KB)   HTML
摘要: 

采用超音速火焰喷涂(HVOF)方法制备了一种FeCrMoMnWBCSi非晶态合金涂层, 测试并分析了非晶涂层组织、钝化膜成分及涂层在不同浓度NaCl和H2SO4介质中的钝化行为, 并与304不锈钢和ND钢进行对比. 结果表明, 非晶涂层由于钝化膜中高含量的Cr, Mo及W的氧化物, 钝化区间宽, 抗钝化膜破裂能力强, 孔隙的存在降低其均匀腐蚀抗力. 304不锈钢钝化膜破裂电位较低且与NaCl溶液浓度密切相关. 304不锈钢和ND钢只有在浓H2SO4溶液中具有较稳定的钝化特征, 非晶结构有助于涂层在稀H2SO4溶液中形成更加稳定的钝化膜, 厚度较小的涂层(200 μm)具有较高的非晶相含量, 形成的钝化膜较厚, 耐蚀性更加优异.

关键词 非晶涂层超音速火焰喷涂钝化电化学腐蚀    
Abstract

Amorphous alloy is a new type of material that exhibits exceptional properties or combinations of properties that are often not achievable in conventional crystalline materials. Fe-based amorphous alloys has attracted significant attention over the last few decades because of their low cost and enhanced mechanical performance. However, they are more suitable for the industrial application of coatings due to the fatal disadvantages of poor toughness. High velocity oxygen-fuel (HVOF) spraying is a good way to make amorphous alloy coatings (AMCs), for the individual droplets are cooled at a rate of around 107 K/s which is much higher than the critical cooling rate of the amorphous alloys during the thermal spraying. Fe-based AMCs obtained by using the HVOF spray method are important materials for industrial applications because of high glass-forming ability and exceptional performances, such as excellent corrosion resistance, high hardness, and superior wear resistance. In this work, FeCrMoMnWBCSi AMCs were prepared by HVOF thermal spray. The microstructure and amorphous characteristics of AMCs were characterized by SEM and XRD. Electrochemical corrosion behavior of AMCs was investigated in different concentration of NaCl and H2SO4 solutions compared with that of 304 stainless steel and ND steel. The surface film of materials after immersed in two solutions was analysed by XPS. The results indicated that HVOF thermal spraying Fe-based AMCs presented dense layered structure, high amorphous phase content and low porosity. The composite structure of AMCs was formed with some nanocrystallite phases embedded in the amorphous matrix. AMCs exhibited better resistance to pitting corrosion and relatively low uniform corrosion resistance due to the porosity, while the pitting potential of 304 stainless steel was sensitive to NaCl concentration. XPS results revealed that the presence of Cr, Mo and W oxides in the passive film of AMCs may result in the better corrosion resistance. The enrichment of Mo4+ oxides on the surface favored the formation of a more stable and protective layer which could be assumed to be responsible for the observed high stability of passive film. The diminishing or avording pores may be beneficial to further improve the pitting corrosion resistance of AMCs in NaCl solution. In all cases, AMCs showed better resistance to H2SO4 solutions corrosion due to the high stability of passive film. 304 stainless steel and ND steel presented stable passivation behavior only in high concentration of H2SO4 solution. In the lower concentration solution of H2SO4, the amorphous structure of the thinner coatings could facilitate the formation of thicker passivation film and lead to the higher corrosion resistance. The corrosion resistance of AMCs in H2SO4 solution could be enhanced significantly by formation of high amorphous phase.

Key wordsamorphous metallic coating (AMC)    high-velocity oxygen-fuel (HVOF)    passivation    electrochemical corrosion
    
ZTFLH:  TG174  
基金资助:* 国家自然科学基金项目51274151和51025415, 中国博士后科学基金项目2014M551447, 黑龙江省自然科学基金项目QC2013C056和黑龙江省教育厅科学技术研究项目12541079资助
作者简介: null

王 勇, 男, 1979年生, 副教授, 博士

图1  Fe54.2Cr18.3Mo13.7Mn2.0W6.0 B3.3C1.1Si1.4非晶条带和涂层的DSC曲线
图2  Fe54.2Cr18.3Mo13.7Mn2.0W6.0 B3.3C1.1Si1.4非晶条带和涂层的XRD谱
图3  非晶涂层表面和侧面的SEM像
图4  非晶条带、涂层和304不锈钢在不同浓度NaCl溶液中动电位极化曲线和EIS谱
图5  非晶条带、涂层、304不锈钢和ND钢在H2SO4溶液中动电位极化曲线和EIS谱
图6  非晶涂层、304不锈钢和ND钢表面在1%NaCl和20%H2SO4溶液中浸泡10 h后的XPS全谱图及Mo和Cu的精细谱峰
图7  非晶涂层在不同浓度H2SO4溶液中表面层各组元含量的深度分布
[1] Hashimoto K. Corrosion, 2002; 58: 715
[2] Inoue A, Shinohara Y, Gook J S. Mater Trans JIM, 1995; 36: 1427
[3] Branagan D J, Swank W D, Haggard D C, Fincke J R. Metall Mater Trans, 2001; 32A: 2615
[4] Wang Y, Zheng Y G, Ke W, Sun W H, Wang J Q. Mater Corros, 2012; 63: 685
[5] Liu D Y, Wang C, Zhang H F, Hu Z Q. Acta Metall Sin, 2005; 41: 209
[5] (刘冬艳, 王 成, 张海峰, 胡壮麒. 金属学报, 2005; 41: 209)
[6] Wang Y, Jiang S L, Zheng Y G, Ke W, Sun W H, Wang J Q. Corros Sci, 2012; 63: 159
[7] Ni H S, Liu X H, Chang X C, Hou W L, Liu W, Wang J Q. J Alloys Compd, 2009; 46: 163
[8] Farmer J, Chol J S, Saw C, Haslam J, Day D, Hailey P, Lian T, Rebak R, Perepezko J, Payer J, Branagan D, Beardsley B, Amato A D, Aprigliano L. Metall Mater Trans, 2009; 40A: 1289
[9] Wang Y, Zheng Y G, Ke W, Sun W H, Hou W L, Chang X C, Wang J Q. Corros Sci, 2011; 53: 3177
[10] Zhang C, Liu L, Chan K C, Chen Q, Tang C Y. Intermetallics, 2012; 29: 80
[11] Wang S, Cheng J, Yi S H, Ke L. Trans Nonferrous Met Soc China, 2014; 24: 146
[12] Chen Q J, Hu L L, Zhou X L, Hua X Z. Rare Met Mater Eng, 2012; 41: 512
[12] (陈庆军, 胡林丽, 周贤良, 华小珍. 稀有金属材料与工程, 2012; 41: 512)
[13] Wang Y, Jiang S L, Zheng Y G, Ke W, Sun W H, Wang J Q. Corros Sci, 2012; 63: 159
[14] Guo J H, Wu J W, Ni X J, Li D R, Lian F Z, Lu Z C. Acta Metall Sin, 2007; 43: 780
[14] (郭金花, 吴嘉伟, 倪晓俊, 李德仁, 连法增, 卢志超. 金属学报, 2007; 43: 780)
[15] Pang S J, Zhang T, Asami K, Inoue A. Corros Sci, 2002; 44: 1847
[16] Wang S L, Yi S. Intermetallics, 2010; 18: 1950
[17] Liu X Q, Zheng Y G, Chang X C, Hou W L, Wang J Q, Tang Z, Burgess A. J Alloys Compd, 2009; 484: 300
[18] Wang A P, Chang X C, Hou W L, Wang J Q. Acta Metall Sin, 2006; 42: 537
[18] (王爱萍, 常新春, 侯万良, 王建强. 金属学报, 2006; 42: 537)
[19] Cao C N,Zhang J Q. Introduction of Electrochemical Impedance Spectroscopy. Beijing: Science Press, 2002: 118
[19] (曹楚南,张鉴清. 电化学阻抗谱导论. 北京: 科学出版社, 2002: 118)
[20] Pardo A, Merino M C, Otero E, Lo'pez M D, M'hichet A. J Non-cryst Solids, 2006; 352: 3179
[21] Wang W H. Prog Phys, 2013; 33: 177
[21] (汪卫华. 物理学进展, 2013; 33: 177)
[22] Scully J R, Payer J H. J Mater Res, 2008; 22: 302
[23] Wang Z M, Ma Y T, Zhang J, Hou W L, Chang X C, Wang J Q. Electrochim Acta, 2008; 54: 261
[24] Lloyd A C, Noel J J, McIntyre S, Shoesmith D W. Electrochim Acta, 2004; 49: 3015
[25] Habazaki H, Kawashima A, Asami K, Hashimoto K. J Electrochem Soc, 1991; 138: 76
[26] Maurice V, Strehblow H H, Marcus P. J Electrochem Soc, 1999; 146: 524
[27] Pedraza F, Roman E, Cristobal M J, Hierro M P, Perez F J. Thin Solid Films, 2002; 414: 231
[1] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[2] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[3] 汤雁冰, 沈新旺, 刘志红, 乔岩欣, 杨兰兰, 卢道华, 邹家生, 许静. 激光选区熔化Inconel 718合金在NaOH溶液中的腐蚀行为[J]. 金属学报, 2022, 58(3): 324-333.
[4] 黄一川, 王清, 张爽, 董闯, 吴爱民, 林国强. 用于燃料电池双极板的不锈钢成分优化[J]. 金属学报, 2021, 57(5): 651-664.
[5] 吕晨曦, 孙阳庭, 陈斌, 蒋益明, 李劲. 恒电位脉冲技术对317L不锈钢点蚀行为及耐点蚀性能的影响[J]. 金属学报, 2021, 57(12): 1607-1613.
[6] 李恺强, 杨璐嘉, 徐云泽, 王晓娜, 黄一. SO42-对模拟孔隙液中Q235B钢筋腐蚀行为的影响[J]. 金属学报, 2019, 55(4): 457-468.
[7] 范丽, 陈海龑, 董耀华, 李雪莹, 董丽华, 尹衍升. 激光熔覆铁基合金涂层在HCl溶液中的腐蚀行为[J]. 金属学报, 2018, 54(7): 1019-1030.
[8] 徐江, 鲍习科, 蒋书运. 纳米晶Ta2N涂层在模拟人体环境中的耐蚀性能研究[J]. 金属学报, 2018, 54(3): 443-456.
[9] 许立宁,朱金阳,王贝. Cr含量和pH值对低铬管线钢半钝化行为的影响[J]. 金属学报, 2017, 53(6): 677-683.
[10] 王垚,李春福,林元华. Cr对Fe-Cr合金耐蚀性能影响的电子理论研究[J]. 金属学报, 2017, 53(5): 622-630.
[11] 夏大海, 宋诗哲, 王俭秋, 骆静利. 690和800合金在高温高压水中硫致腐蚀失效研究进展[J]. 金属学报, 2017, 53(12): 1541-1554.
[12] 岑升波,陈辉,刘艳,马元明,吴影. CeO2对超音速火焰喷涂WC-12Co涂层腐蚀行为的影响*[J]. 金属学报, 2016, 52(11): 1441-1448.
[13] 陈永君, 胡小刚, 羌建兵, 董闯. 准晶磨料的“碾抹”特性对软金属表面的平整性、硬度及耐蚀性的影响*[J]. 金属学报, 2016, 52(10): 1353-1362.
[14] 朴楠,陈吉,尹成江,孙成,张星航,武占文. 超细晶304L不锈钢在含Cl-溶液中点蚀行为的研究[J]. 金属学报, 2015, 51(9): 1077-1084.
[15] 文怀梁, 董俊华, 柯伟, 陈文娟, 阳靖峰, 陈楠. 模拟高放废物地质处置环境下重碳酸盐浓度对低碳钢活化/钝化腐蚀倾向的影响*[J]. 金属学报, 2014, 50(3): 275-284.