Please wait a minute...
金属学报  2014, Vol. 50 Issue (12): 1429-1436    DOI: 10.11900/0412.1961.2014.00333
  本期目录 | 过刊浏览 |
回火对9Cr2WVTa钢电子束焊接接头组织和力学性能的影响
高恒, 宋元元, 赵明久, 胡小锋, 戎利建()
中国科学院金属研究所中国科学院核用材料和安全评价重点实验室, 沈阳 110016
EFFECTS OF TEMPERING ON THE MICROSTRUC-TURE AND MECHANICAL PROPERTY OF ELECTRON BEAM WELDING JOINT OF 9Cr2WVTa STEEL
GAO Heng, SONG Yuanyuan, ZHAO Mingjiu, HU Xiaofeng, RONG Lijian()
Key Laborotary of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

高恒, 宋元元, 赵明久, 胡小锋, 戎利建. 回火对9Cr2WVTa钢电子束焊接接头组织和力学性能的影响[J]. 金属学报, 2014, 50(12): 1429-1436.
Heng GAO, Yuanyuan SONG, Mingjiu ZHAO, Xiaofeng HU, Lijian RONG. EFFECTS OF TEMPERING ON THE MICROSTRUC-TURE AND MECHANICAL PROPERTY OF ELECTRON BEAM WELDING JOINT OF 9Cr2WVTa STEEL[J]. Acta Metall Sin, 2014, 50(12): 1429-1436.

全文: PDF(8132 KB)   HTML
摘要: 

对9Cr2WVTa钢进行电子束焊接, 并对焊接接头进行不同温度回火处理, 研究了回火对焊接接头组织和力学性能的影响. 结果表明, 焊态下, 焊缝由粗大的板条马氏体和d铁素体组成. 高温回火后, 基体中析出大量M23C6 型碳化物. 硬度测试结果表明, 焊态下焊缝硬度远高于母材, 随回火温度升高, 焊缝硬度逐渐下降, 但仍高于母材. 拉伸测试结果表明, 断裂位置均出现在母材, 表明焊缝仍保持了较高强度. 采用带沟槽的V型冲击试样获得了完全的焊缝断口, 室温冲击实验结果表明, 焊态下, 焊缝冲击韧性差, 冲击功远低于母材; 经回火后, 焊缝冲击韧性显著提高. 焊后回火热处理使焊缝获得了较好的综合力学性能.

关键词 9Cr2WVTa钢电子束焊接焊接接头回火显微组织力学性能    
Abstract

9Cr2WVTa steel is one kind of reduced activation ferritic/martensitic (RAFM) steels which exhibit lower thermal expansion coefficient, higher thermal conductivity and less irradiation swelling compared with austenitic steel. It has been considered as the candidate structural material for the accelerator driven subcritical system (ADS). Due to the narrow heat affected zone and large depth to width ratio, electron beam (EB) welding is expected as a potential technique to connect components of ADS. However, few previous studies have focused on the weldability of 9Cr2WVTa steel by EB welding. In this work, EB welding was applied to join the 9Cr2WVTa steel and tempering was used to modify the microstructure and mechanical properties of the weld joint. Microstructure analysis shows that the weld metal consists of coarse lath martensite and d-ferrite. After high temperature tempering, large amounts of M23C6 type carbides precipitate in the matrix. Tempering lowers the hardness of the weld metal. Tensile tests show that the strength of the weld joint decreases, but the total elongation increases after tempering. It was found that the accurate impact energy of the weld metal was not able to be measured with standard Charpy impact specimen due to the crack deviation from the weld metal to the base metal. In order to estimate the impact property of the weld metal accurately, Charpy V-notch specimens with side-grooves were used. The result shows that tempering induces a significant improvement of the impact energy to the weld metal compared with the as-welded condition. Furthermore, the weld metal demonstrates better impact property than the base metal, which results from the existence of low fraction of d-ferrite in the weld metal.

Key words9Cr2WVTa steel    electron beam welding    weld joint    tempering    microstructure    mechanical property
    
ZTFLH:  TG457.11  
基金资助:*国家自然科学基金项目91226204和中国科学院先导专项项目XDA03010304资助
作者简介: null

高 恒, 女, 1989年生, 硕士生

图1  带沟槽V型冲击试样示意图
图2  9Cr2WVTa钢电子束焊接焊后熔池形貌
图3  9Cr2WVTa钢电子束焊接焊后焊接接头微观组织
图4  焊态和不同温度热处理后焊缝组织及780 ℃回火后析出相形貌的SEM像
图5  热处理前后焊接接头硬度分布
图6  焊缝位错密度分布
图7  焊接接头拉伸性能
图8  冲击断口截面分析示意图
图9  普通Charpy V型冲击断口与带沟槽V型冲击断口焊缝截面形貌
图10  焊态及750 ℃, 2 h热处理焊缝断口形貌
[1] Shiba K, Enoeda M, Jitsukawa S. J Nucl Mater, 2004; 329-333: 243
[2] Yang C G, Yan W, Wang W, Shan Y Y, Yang K. Acta Metall Sin, 2011; 47: 917
[2] (杨春光, 严 伟, 王 威, 单以银, 杨 柯. 金属学报, 2011; 47: 917)
[3] Yvon P, Carre F. J Nucl Mater, 2009; 385: 217
[4] Klimiankou M, Lindau R, Moslang A. Micron, 2005; 36: 1
[5] Klueh R L. Int Mater Rev, 2005; 50: 287
[6] Kohyama A. Mater Trans, 2005; 46: 384
[7] Kurtz R J, Abe K, Chernov V M, Hoelzer D T, Matsui H. J Nucl Mater, 2004; 329-333: 47
[8] Pilloni L, Attura F, Calza-Bini A, De Santis G, Filacchioni G, Carosi A, Amato S. J Nucl Mater, 1998; 258-263: 1329
[9] Jiang Z Z, Huang J H, Chen S H, Ju X. Trans Chin Weld Inst, 2011; 32(3): 45
[9] (姜志忠, 黄继华, 陈树海, 巨 新. 焊接学报, 2011; 32(3): 45)
[10] Cho S, Kim D H, Ahn M Y. J Nucl Mater, 2009; 386-388: 491
[11] Rensman J,van Osch E V, Horsten M G, d'Hulst D S. J Nucl Mater, 2000; 283-287: 1201
[12] Schaeffler A L. Metall Prog, 1974; 106: 227
[13] Hu X Q, Xiao N M, Luo X H, Li D Z. Acta Metall Sin, 2009; 45: 553
[13] (胡小强, 肖纳敏, 罗兴宏, 李殿中. 金属学报, 2009; 45: 553)
[14] Wang P, Lu S P, Xiao N M, Li Y Y. Mater Sci Eng, 2010; A527: 3210
[15] Onoro J. Int J Pressure Vessels Piping, 2006; 83: 540
[16] Lippold J C. J Nucl Mater, 1981; 103-104: 1127
[17] Fenn R, Jordan M F. Met Technol, 1982; 9: 327
[18] Elmer J W, Allen S M, Eagar T W. Metall Trans, 1989; 20A: 2117
[19] Kokawa H, Kuwana T, Yamamoto A. Weld J, 1989; 68: 92
[20] Wen T, Hu X F, Song Y Y, Yan D S, Rong L J. Acta Metall Sin, 2014; 50: 447
[20] (温 涛, 胡小锋, 宋元元, 闫德胜, 戎利建. 金属学报, 2014; 50: 447)
[21] Atamert S, King J E. Acta Mater, 1991; 39: 273
[22] Jayaram R, Klueh R L. Metall Mater Trans, 1998; 29A: 1551
[23] Kim S H, Moon H K, Kang T, Lee C S. Mater Sci Eng, 2003; A356: 390
[24] Pesicka J, Kuzel R, Dronhofer A, Eggeler G. Acta Mater, 2003; 51: 4847
[25] Pesicka J, Dronhofer A, Eggeller G. Mater Sci Eng, 2004; A387-389: 176
[26] Ohashi M. J Mater Sci, 2007; 42: 9877
[27] Green G, Knott J F. Met Technol, 1975; 2: 422
[28] Anderko K, Schafer L, Matterna-Morros E. J Nucl Mater, 1991; 179-181: 492
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[14] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[15] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.