Please wait a minute...
金属学报  2014, Vol. 50 Issue (12): 1421-1428    DOI: 10.11900/0412.1961.2014.00216
  本期目录 | 过刊浏览 |
喷射成形含铌M3型高速钢组织与性能研究
王和斌1, 侯陇刚1(), 张金祥1, 卢林1, 于一鹏2, 崔华3, 张济山1
1 北京科技大学新金属材料国家重点实验室, 北京 100083
2 钢铁研究总院, 北京 100081
3 北京科技大学材料科学与工程学院, 北京 100083
MICROSTRUCTURES AND PROPERTIES OF SPRAY FORMED Nb-CONTAINING M3 HIGH SPEED STEEL
WANG Hebin1, HOU Longgang1(), ZHANG Jinxiang1, LU Lin1, YU Yipeng2, CUI Hua3, ZHANG Jishan1
1 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
2 Central Iron & Steel Research Institute, Beijing 100081
3 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
引用本文:

王和斌, 侯陇刚, 张金祥, 卢林, 于一鹏, 崔华, 张济山. 喷射成形含铌M3型高速钢组织与性能研究[J]. 金属学报, 2014, 50(12): 1421-1428.
Hebin WANG, Longgang HOU, Jinxiang ZHANG, Lin LU, Yipeng YU, Hua CUI, Jishan ZHANG. MICROSTRUCTURES AND PROPERTIES OF SPRAY FORMED Nb-CONTAINING M3 HIGH SPEED STEEL[J]. Acta Metall Sin, 2014, 50(12): 1421-1428.

全文: PDF(6894 KB)   HTML
摘要: 

采用喷射成形快速凝固技术制备了M3型高速钢和以Nb代V的M3型高速钢. 利用SEM(EDS), XRD, OM, TEM, HRTEM研究了Nb对M3型高速钢组织的影响和其组织演变. 结果表明, 喷射成形消除了宏观偏析, 细化了组织, 以Nb代V, 可在共晶反应前析出MC型碳化物, 使其球形化、均匀分布, 由于消耗大量C, 共晶M2C碳化物数量减少, 促使更多W和Mo固溶进基体. 均匀分布的高热稳定性含Nb-MC型碳化物能阻碍奥氏体化过程中晶粒长大, 但难以固溶, 使得回火过程中主要析出与基体共格的M2C型碳化物. 喷射成形含Nb钢硬度和弯曲强度高于ASP23钢, 大量硬质MC碳化物易于产生应力集中, 使其韧性稍低于ASP23.

关键词 喷射成形M3型高速钢Nb显微组织    
Abstract

The billets of M3 high speed steel (HSS) with or without niobium addition were prepared via spray forming and compared with traditional cast steels with same composition, followed by hot forged and heat treated. The corresponding microstructure evolutions of steels induced by niobium have been investigated using SEM with EDS, XRD, OM, TEM and HRTEM. The results show that finer and uniformly-distributed grains without macrosegregation appear in the as-deposited HSS that are different to the as-cast HSS, 1% (mass fraction) niobium addition can promote the formation of primary MC-type carbides before onset of eutectic reaction, which can make the MC particles refined and evenly distributed. Niobium mainly contribute to the primary MC-type carbides by consuming carbon, the eutectic reaction is suppressed and the quantity of M2C eutectic carbides decrease, leading to more W and Mo atoms dissolve into matrix. Compared to spray formed M3 HSS, the niobium alloying M3 HSS possesses higher stability during austenitization, induced by the high stabilization of Nb-containing MC carbides, which can pin the grain boundaries and keep the grain size of primary austenite below that of spray formed M3 HSS. The quenched hardness of niobium-containing steel is remarkably higher, while the over tempering hardness of it is a little below than that of M3 HSS, it is related to the difference of dissolution rate of carbides during austenitization and the precipitation behavior of the secondary carbides after tempering. The amount of Nb-containing MC carbides are hard to dissolve into matrix, additionally, lower content of M2C carbides are in the as-deposited steel, leading to the larger numbers of nano-scaled M2C secondary carbides precipitate after tempering. Spray formed niobium-containing steel has a more advanced hardness and bending strength compared with ASP23, but possesses a lower impact toughness due to that the stress concentration can easily caused by mass of harder MC carbides distributed in matrix.

Key wordsspray forming    M3 high speed steel    Nb    microstructure
    
ZTFLH:  TG142.1  
基金资助:*国家重点基础研究发展计划资助项目2011CB606303
作者简介: null

王和斌, 男, 1985年生, 博士生

Steel C W Mo Cr V Nb Si Mn N Fe
M3 1.29 6.37 5.11 4.12 2.97 - 0.30 0.27 0.0025 Bal.
MN1 1.26 6.26 5.07 4.05 2.41 1.05 0.23 0.21 0.0029 Bal.
表1  实验材料的化学成分
图1  沉积态和铸造态试样的SEM像
Steel Carbide W Mo Cr V Nb Fe
M3 MC 8.63 11.73 3.99 70.44 - 5.21
M2C 17.57 32.57 13.33 23.13 - 13.39
MN1 MC 10.22 14.84 3.36 40.78 24.70 6.10
M2C 18.93 29.88 11.31 17.08 7.17 15.62
表2  沉积态M3和MN1中一次碳化物的EDS分析结果
图2  沉积态M3和MN1钢的XRD谱
  
Temperature Steel Xt (Xm) a(a-Fe) Va Vd Vr Hardness
HRC
% nm % % %
1180 M3 6.06 (1.38) 0.29043 27.84 21.78 17.12 65.8
MN1 8.11 (3.87) 0.29099 31.55 23.44 21.56 66.1
1220 M3 5.93 (2.38) 0.29117 27.84 21.91 25.43 64.1
MN1 7.39 (3.44) 0.29154 31.55 24.16 23.33 64.8
表3  1180和1220 ℃淬火后碳化物体积分数、残余奥氏体含量、a-Fe晶格常数以及淬火态硬度
图4  MN1和M3钢经580 ℃ 3次回火的TEM像和相应的SAED谱
图5  M3, MN1钢和ASP23的力学性能曲线
图6  MN1和APS23室温冲击断口形貌
[1] Hwang K C, Lee S, Lee H C. Mater Sci Eng, 1998; A254: 282
[2] Steven G, Nehrenberg A E, Philip V. Trans Am Soc Met, 1964; 57: 925
[3] Kuo K. J Iron Steel Inst, 1953; 174: 223
[4] Hwang K C, Lee S, Lee H C. Mater Sci Eng, 1998; A254: 296
[5] Mesquita R A, Barbosa C A. Mater Sci Forum, 2005; 498-499: 244
[6] Hellman P. Scand J Metall, 1998; 27: 44
[7] Kumar K S, Lawley A, Koczak M J. Metall Mater Trans, 1991; 22A: 2733
[8] Singer A R E. Mater Sci Eng, 1991; A135: 13
[9] Grant P S. Prog Mater Sci, 1995; 39: 497
[10] Forrest J, Price R, Hanlon D N. Int J Powder Metall, 1997; 33: 21
[11] Lavernia E J, Grant N J. Mater Sci Eng, 1988; A98: 381
[12] Grant P S. Metall Mater Trans, 2007; 38A: 1520
[13] Liang X, Lavernia E J. Mater Sci Eng, 1993; A161: 221
[14] Mesquita R A, Barbosa C A. Mater Sci Eng, 2004; A383: 87
[15] Schulz A, Uhlenwinkel V, Escher C. Mater Sci Eng, 2008; A477: 69
[16] Cui C, Fritsching U, Schulz A. J Mater Sci, 2004; 39: 5639
[17] Yang Y F, Hannula S P. Mater Sci Eng, 2004; A383: 39
[18] Yang Y F, Hannula S P. Mater Sci Eng, 2008; A477: 63
[19] Zhang J G, Sun D S, Shi H S. Mater Sci Eng, 2002; A326: 20
[20] Zhang G Q, Yuan H, Jiao D L, Li Z, Zhang Y, Liu Z W. Mater Sci Eng, 2012; A558: 566
[21] Yu Y P, Huang J F, Cui H, Cai Y H, Zhang J S. Acta Metall Sin, 2012; 48: 935
[21] (于一鹏, 黄进峰, 崔 华, 蔡元华, 张济山. 金属学报, 2012; 48: 935)
[22] Karagöz S, Fischmeister H F. Metall Trans, 1988; 19A: 1395
[23] Dobrzanski L A, Zarychta A, Ligarski M. J Mater Process Technol, 1997; 63: 531
[24] Heisterkamp F, Keown S R. Metall Mater, 1978; 10: 35
[25] Keown S R, Kudielka E, Heisterkamp F. Met Technol, 1980; 7: 50
[26] Lee E S, Park W J, Baik K Y, Ahn S. Scr Mater, 1998; 39: 1133
[27] Lee E S, Park W J, Jung J Y, Ahn S. Metall Mater Trans, 1998; 29A: 1395
[28] Fredriksson H, Hillert M, Nica M. Scand J Metall, 1979; 8: 115
[29] Zhou X F, Fang F, Li G. ISIJ Int, 2010; 50: 1151
[30] Wang R, Dunlop G. Acta Metall, 1984; 32: 1591
[31] Wang R, Andren H, Wisell H, Dunlop G. Acta Metall, 1992; 40: 1727
[32] Fischmeister H, Karagöz S, Andren H. Acta Metall, 1988; 36: 817
[33] Karagöz S, Fischmeister H F, Andren H. Metall Trans, 1992; 23A: 1631
[34] Stiller K, Svensson L, Howell P R, Wang R, Andren H, Dunlop G L. Acta Metall, 1984; 32: 1457
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[4] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[5] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[6] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[7] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[8] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[9] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[10] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[11] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[12] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[13] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[14] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[15] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.