Please wait a minute...
金属学报  2014, Vol. 50 Issue (8): 913-920    DOI: 10.11900/0412.1961.2013.00760
  本期目录 | 过刊浏览 |
回火温度对高Ti微合金直接淬火高强钢组织及性能的影响*
张可1,2, 雍岐龙2(), 孙新军2, 李昭东2, 赵培林3, 陈守东4
1 昆明理工大学材料科学与工程学院, 昆明 650093
2 钢铁研究总院工程用钢所, 北京 100081
3 莱芜钢铁集团有限公司技术中心, 莱芜 271104
4 东北大学轧制技术及连轧自动化国家重点实验室, 沈阳 110819
EFFECT OF TEMPERING TEMPERATURE ON MICRO-STRUCTURE AND MECHANICAL PROPERTIES OF HIGH Ti MICROALLOYED DIRECTLY QUENCHED HIGH STRENGTH STEEL
ZHANG Ke1,2, YONG Qilong2(), SUN Xinjun2, LI Zhaodong2, ZHAO Peilin3, CHEN Shoudong4
1 School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093
2 Institute of Structural Steels, Central Iron and Steel Research Institute, Beijing 100081
3 R&D Center, Laiwu Iron and Steel Group Co Ltd, Laiwu 271104
4 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
引用本文:

张可, 雍岐龙, 孙新军, 李昭东, 赵培林, 陈守东. 回火温度对高Ti微合金直接淬火高强钢组织及性能的影响*[J]. 金属学报, 2014, 50(8): 913-920.
Ke ZHANG, Qilong YONG, Xinjun SUN, Zhaodong LI, Peilin ZHAO, Shoudong CHEN. EFFECT OF TEMPERING TEMPERATURE ON MICRO-STRUCTURE AND MECHANICAL PROPERTIES OF HIGH Ti MICROALLOYED DIRECTLY QUENCHED HIGH STRENGTH STEEL[J]. Acta Metall Sin, 2014, 50(8): 913-920.

全文: PDF(4485 KB)   HTML
摘要: 

利用TEM, SEM及物理化学相分析法, 研究了回火温度对高Ti微合金直接淬火高强钢显微组织和力学性能的影响. 结果表明, 随着回火温度的升高, 抗拉曲线出现明显的转折点, 抗拉强度先降低后升高, 而屈服强度缓慢升高. 回火温度为600 ℃时, 实验钢具有最佳的综合力学性能; 抗拉强度为1043 MPa, 屈服强度为1020 MPa, 延伸率为16%, -40 ℃冲击功为67.7 J. 其主要原因是600 ℃时, 纳米级的析出相数量最多, 体积分数最大, 分布最均匀. 600 ℃回火时, 实验钢的固溶强化和沉淀强化的强度增量分别约为149.82 和171.72 MPa.

关键词 高Ti微合金钢回火温度冲击功塑性析出相    
Abstract

Over the past years, Ti microalloying technique has not been developed sufficiently compared to Nb and V, due to its special metallurgy characteristics. Higher chemical activity of Ti results in larger inclusions when Ti combines with O, N and S. In addition, higher temperature sensitivity of TiC precipitation leads to the instability of steel strips. Owning to the above reasons, the conventional high strength steels with the microstructure of martensite, bainite or the composite of the two were microalloyed with (0.01%~0.03%)Ti (mass fraction) for austenite grain refinement during soaking. The addition of high Ti (>0.1%) in microalloyed high strength martensitic or bainitic steels were rarely touched upon. The effects of tempering temperature on the microstructure and mechanical properties of high Ti microalloyed directly quenched high strength steel were investigated by TEM, SEM and physical-chemical phase analysis. The results show that with the increase of tempering temperature, the tensile curve has an obvious turning point. The tensile strength gradually decreases first and then increases, while the yield strength increases slowly. At tempering temperature 600 ℃, the experimental steel shows the best mechanical properties with tensile strength at 1043 MPa, yield strength at 1020 MPa and the elongation of 16%, while the Charpy impact energy is 67.7 J at -40 ℃. The main reason is that the amount of nanometer precipitates reaches the maximum, their distributions are also relatively uniform and the size is significantly small. The solid solution strengthening and precipitation strengthening increment of the experiment steel tempering at 600 ℃ were about 149.82 and 171.72 MPa, respectively.

Key wordshigh Ti microalloyed steel    tempering temperature    impact energy    ductility    precipitate
收稿日期: 2013-11-24     
ZTFLH:  TG142.1  
基金资助:*国家重点基础研究发展计划资助项目2010CB630805
作者简介: null

张可, 男, 1983年生, 博士生

图1  实验钢的轧制工艺及冷却示意图
图2  回火温度对实验钢力学性能的影响
图3  不同工艺条件下实验钢的SEM像
图4  实验钢不同回火温度下的TEM像
图5  实验钢经500和600 ℃回火后析出相的XRD谱
Temperature MC M3C MC
Ti* Nb Mo C* S Fe Mn Cr Mo C* S
500 0.071 0.035 0.024 0.026 0.156 0.619 0.066 0.020 0.010 0.051 0.766 (Ti0.70Nb0.18Mo0.12)C
600 0.085 0.040 0.048 0.033 0.206 0.425 0.048 0.015 0.021 0.036 0.545 (Ti0.66Nb0.16Mo0.18)C
表1  实验钢在500和600 ℃回火后析出相的定量分析结果
图6  回火温度为600 ℃时颗粒尺寸小于10 nm的析出相的TEM像及其对应的EDS分析
图7  不同温度回火MC相的粒度分布
图8  实验钢经500 和 600 ℃回火后MC相粒子的分布
Particle size
nm
Mass fraction
%
Volume fraction
%
Strength increment / MPa
Eq. (4) Eq. (5)
1~5 20.4 0.000543 150.79 162.12
5~10 9.3 0.000247 54.55 61.19
10~18 17.8 0.000473 49.10 55.74
18~36 3.2 0.000085 12.83 14.69
36~60 3.2 0.000085 8.21 9.45
表2  在600 ℃析出强化增量计算值
[1] Yong Q L,Ma M T,Wu B R. Microalloyed Steel—Physical and Mechanical Metallurgy. Beijing: China Machine Press, 1989: 65
[1] (雍岐龙,马鸣图,吴宝榕. 微合金钢—物理和力学冶金. 北京: 机械工业出版社, 1989: 65)
[2] Qian Y J, Yu W, Wu H B, Yang Y H. J Univ Sci Technol Beijing, 2010; 32: 509
[2] (钱亚军, 余 伟, 武会宾, 杨跃辉. 北京科技大学学报, 2010; 32: 509)
[3] Lu F, Kang J, Wang C, Wang Z D, Wang G D. Iron Steel, 2012; 47: 92
[3] (卢 峰, 康 健, 王 超, 王昭东, 王国栋. 钢铁, 2012; 47: 92)
[4] Chang W S. J Mater Sci, 2002; 37: 1973
[5] Ghosh A, Mishra B, Das S. Mater Sci Eng, 2005; A396: 320
[6] Xu L S, Yu W, Lu X J. J Univ Sci Technol Beijing, 2012; 34: 125
[6] (徐立善, 余 伟, 卢小节. 北京科技大学学报, 2012; 34: 125)
[7] Han Y, Shi J, Cao W Q, Dong H. Mater Sci Eng, 2011; A530: 643
[8] Xu L, Shi J, Cao W Q, Wang M Q, Hui W J, Dong H. J Mater Sci, 2011; 46: 3653
[9] Funakawa Y, Shiozaki, Tomita K, Yamamoto T, Yamamoto T, Maeda E. ISIJ Int, 2004; 44: 1945
[10] Chen C Y, Yen H W, Kao F H, Li W C, Huang S H. Mater Sci Eng, 2009; A499: 162
[11] Park D B, Huh M Y, Shim J H, Shim J Y, Lee K H, Jung W S. Mater Sci Eng, 2013; A560: 528
[12] Jha G, Das S, Siaha S, Lodh A, Haldar A. Mater Sci Eng, 2013; A561: 394
[13] Kim Y W, Song S W, Seo S J, Hong S G, Lee C S. Mater Sci Eng, 2013; A565: 430
[14] Mao X P, Huo X D, Sun X J, Chai Y Z. J Mater Process Technol, 2010; 210: 1660
[15] Liu Q D, Liu W Q, Wang Z M, Zhou B X. Acta Metall Sin, 2009; 45: 1281
[15] (刘庆冬, 刘文庆, 王泽民, 周邦新. 金属学报, 2009; 45: 1281)
[16] Xu Z Y, Cao S W. Acta Metall Sin, 1987; 23: 477
[16] (徐祖耀, 曹四维. 金属学报, 1987; 23: 477)
[17] Gtossmann M A. Trans AIME, 1946; 167: 39
[18] Klingler L J, Barnrtt W J, Frohmberg R P, Troiano A R. Trans ASM, 1954; 46: 1557
[19] Guo K X. Acta Metall Sin, 1957; 2: 303
[19] (郭可信. 金属学报, 1957; 2: 303)
[20] Hyam E D, Nutting J. J Iron Steel Inst, 1956; 184: 148
[21] Liu Q D, Peng J C, Liu W Q, Zhou B X. Acta Metall Sin, 2009; 45: 1288
[21] (刘庆冬, 彭剑超, 刘文庆, 周邦新. 金属学报, 2009; 45: 1288)
[22] Yong Q L. Secondary Phases in Steels. Beijing: Metallurgical Industry Press, 2006: 172
[22] (雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 172)
[23] Yong Q L, Sun X J, Zheng L, Yong X, Liu Z B, Chen M X. Sci Technol Innovation Herald, 2009; (8): 2
[23] (雍岐龙, 孙新军, 郑 磊, 雍 兮, 刘振宝, 陈明昕. 科技创新导报, 2009; (8): 2)
[24] Soto R, Saikaly W, Bano X, Issartel C, Rigaut G, Charai A. Acta Mater, 1999; 47: 3475
[25] Gladman T, Dulieu D, Mivor I D. Proceedings of Symposium on Microalloying 75, New York: Union Carbide Corp, 1976: 32
[26] Cao J C, Yong Q L, Liu Q Y, Sun X J. J Mater Sci, 2007; 42: 10080
[27] Gladman T. Mater Sci Technol, 1999; 15: 30
[1] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] 徐永生, 张卫刚, 徐凌超, 但文蛟. 铁素体晶间变形协调与硬化行为模拟研究[J]. 金属学报, 2023, 59(8): 1042-1050.
[3] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[4] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[5] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[6] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[7] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[8] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[9] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[10] 李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.
[11] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[12] 张新房, 向思奇, 易坤, 郭敬东. 脉冲电流调控金属固体中的残余应力[J]. 金属学报, 2022, 58(5): 581-598.
[13] 高钰璧, 丁雨田, 李海峰, 董洪标, 张瑞尧, 李军, 罗全顺. 变形速率对GH3625合金弹-塑性变形行为的影响[J]. 金属学报, 2022, 58(5): 695-708.
[14] 李民, 李昊泽, 王继杰, 马颖澈, 刘奎. 稀土Ce对薄带连铸无取向6.5%Si钢组织、高温拉伸性能和断裂模式的影响[J]. 金属学报, 2022, 58(5): 637-648.
[15] 郭祥如, 申俊杰. 孪生诱发软化与强化效应的Cu晶体塑性行为模拟[J]. 金属学报, 2022, 58(3): 375-384.