Please wait a minute...
金属学报  2013, Vol. 49 Issue (12): 1604-1610    DOI: 10.3724/SP.J.1037.2013.00330
  论文 本期目录 | 过刊浏览 |
汽车板用Al—0.6Mg—0.9Si—0.2Cu合金时效析出动力学研究
张巧霞,郭明星,胡晓倩,曹零勇,庄林忠,张济山
北京科技大学新金属材料国家重点实验室, 北京 100083
STUDY ON KINETICS OF PRECIPITATION IN Al—0.6Mg—0.9Si—0.2Cu ALLOY FOR AUTOMOTIVE APPLICATION
ZHANG Qiaoxia, GUO Mingxing, HU Xiaoqian, CAO Lingyong, ZHUANG Linzhong, ZHANG Jishan
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
引用本文:

张巧霞,郭明星,胡晓倩,曹零勇,庄林忠,张济山. 汽车板用Al—0.6Mg—0.9Si—0.2Cu合金时效析出动力学研究[J]. 金属学报, 2013, 49(12): 1604-1610.
ZHANG Qiaoxia, GUO Mingxing, HU Xiaoqian, CAO Lingyong, ZHUANG Linzhong, ZHANG Jishan. STUDY ON KINETICS OF PRECIPITATION IN Al—0.6Mg—0.9Si—0.2Cu ALLOY FOR AUTOMOTIVE APPLICATION[J]. Acta Metall Sin, 2013, 49(12): 1604-1610.

全文: PDF(541 KB)  
摘要: 

采用差示扫描量热法(DSC)和硬度测量方法对汽车用Al—0.6Mg—0.9Si—0.2Cu(质量分数, %)合金不同状态析出动力学进行了研究. 结果表明,T4态合金升温到100—-150℃时, DSC曲线出现低温析出峰,而T4P态合金无此低温析出峰; 经过T4P处理的合金其β″相析出峰位向低温移动.利用A—J—M方法计算合金不同相析出动力学参数,结果表明, T4和T4P态合金GP区溶解激活能分别为66和119 kJ/mol, β″相析出激活能分别为114和60 kJ/mol;T4态合金的溶解和析出动力学方程分别为:YGP=1-exp[-1.3×107t exp(-7977/T)],Yβ=1-exp[-4.7×1022t2exp(-27484/T)];T4P态合金的溶解和析出动力学方程分别为:YGP=1-exp[-2.4×1013 t exp(-14345/T)],Yβ=1-exp[-2.9×1011t2 exp(-14392/T)].此外, 在185℃时效过程中, 随着时效时间的延长, T4和T4P态合金的硬度均先不断增加达到峰值后趋于平缓,但是T4态合金经20 min时效处理后出现硬度下降, 而T4P态合金无此现象,利用GP区回溶和β″相析出动力学对此变化规律进行了很好的解释.

关键词 Al-Mg-Si-Cu合金汽车板自然时效预时效动力学    
Abstract

The kinetics of precipitation in Al—0.6Mg—0.9Si—0.2Cu (mass fraction, %) alloy under different conditions was investigated by differential scanning calorimetric analyses (DSC) and microhardness measurements. The results show that, an exothermic peak at about 100—-150℃ can be observed in the DSC curve for the nature aged (T4) alloy, but no peak for the pre—aged (T4P) alloy, and the peak corresponding with β″ phase moves toward the low temperature zone for T4P alloy. The fraction of transformation Y, the rate of transformation dY/dT, and the kinetic parameters such as activation energy Q and frequency factor k0 for GP zones dissolution and β″phase transformation were calculated by Avrami—Johnson—Mehl equation. The values of activation energy for GP zones dissolution after natural aging and pre—aging were 66 and 119 kJ/mol, respectively, and the values forβ″phase formation after natural aging and pre—aging were 114 and 60 kJ/mol, respectively. The kinetics expressions were obtained as follows, for T4 alloy:YGP=1-exp[-1.3×107t exp(-7977/T)],Yβ=1-exp[-4.7×1022t2 exp(-27484/T)];for T4P alloy: YGP=1-exp[-2.4×1013 t exp(-14345/T)],Yβ=1-exp[-2.9×1011t2 exp(-14392/T)].In addition, with the increasing of aging time, the wholetrend of hardness changing for pre—aged alloy is increasing at first, and then keeps constant basically,but for the nature aged alloy, the hardness decreases after aging at 185℃ for 20 min, which was explained by the kinetics obtained above.

Key wordsAl-Mg-Si-Cu alloy    automotive sheet, nature aging    pre-aging    kinetics
收稿日期: 2013-06-17     
基金资助:

国家高技术研究发展计划项目SS2013AA032103和中央高校基本科研业务费项目FRF—TD—12—001资助

作者简介: 张巧霞, 女, 1987年生, 硕士生

[1] Miller W S, Zhuang L, Bottema J, Wittebrood A J, De Smet P, Haszler A,Vieregge A.  Mater Sci Eng, 2000; A280: 37

[2] Birol Y, Karlik M.  Scr Mater, 2006; 55: 625
[3] Birol Y.  Mater Sci Eng, 2005; A391:175
[4] Liu H, Chen Y, Zhao G, Liu C M, Zuo L.  Trans Nonferrous Met Soc China, 2006; 16: 917
[5] Zhen L, Kang S B.  Scr Mater, 1997; 36: 1089
[6] Ou B L, Shen C H.  Scand J Metall, 2005; 34: 318
[7] Esmaeili S, Lloyd D J.  Acta Mater, 2005; 53: 5257
[8] Wei F, Li J S, Chen C Q.  Rare Met Mater Eng, 2008; 37: 1348
(魏芳, 李金山, 陈昌麒. 稀有金属材料与工程, 2008; 37: 1348)
[9] Gupta A K, Jena A K, Chaturvedi M C.  Scr Metall, 1988; 22: 369
[10] Ghosh K S, Gao N.  Trans Nonferrous Met Soc China, 2011; 21: 1199
[11] Oguocha I N A, Yannacopoulos S.  Mater Sci Eng, 1997; A231: 25
[12] Edwards G A, Stiller K, Dunlop G L, Couper M J.  Acta Mater, 1998; 46: 3893
[13] De Geuser F, Lefebvre W, Blavette D.  Philos Mag Lett, 2006; 86: 227
[14] Zhen L, Kang S B, Kim H W.  Mater Sci Technol, 1997; 13: 905
[15] Murayama M, Hono K.  Acta Mater, 1999; 47: 1537
[16] Miao W F, Laughlin D E.  Metall Mater Trans, 2000; 31A: 361
[17] Esmaeili S, Lloyd D J.  Mater Charact, 2005; 55: 307
[18] An Y G, Zhang L, Vegter H, Hurkmans A.  Metall Mater Trans, 2002; 33A: 3121
[19] Luo A, Lloyd D J, Gupta A, Youdelis W V.  Acta Metall Mater, 1993; 41: 769
[20] Ortega A.  Thermochim Acta, 1996; 284: 379
[21] Matsuda K, Naoi T, Fujii K, Uetani Y, Sato T, Kamio A, Ikeno S.  Mater Sci Eng, 1999;A262: 232
[22] Chakrabarti D J, Laughlin D E.  Prog Mater Sci, 2004; 49: 389
[23] Gaber A, Ali A M, Matsuda K, Kawabata T, Yamazaki T, Ikeno S.  J Alloys Compd, 2007;432: 149
[24] Cuniberti A, Tolley A, Riglos M V, Giovachini R.  Mater Sci Eng, 2010; A527: 5307
[25] Buha J, Lumley R N, Crosky A G, Hono K.  Acta Mater, 2007; 55: 3015
[26] Galwey A K, Brown M E.  Handbook of Thermal Analysis and Calorimetry. Amsterdam: Elesvier, 1998: 147
[1] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[2] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[3] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[4] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[5] 巩向鹏, 伍翠兰, 罗世芳, 沈若涵, 鄢俊. 自然时效对Al-2.95Cu-1.55Li-0.57Mg-0.18Zr合金160℃人工时效的影响[J]. 金属学报, 2023, 59(11): 1428-1438.
[6] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[7] 杜宗罡, 徐涛, 李宁, 李文生, 邢钢, 巨璐, 赵利华, 吴华, 田育成. Ni-Ir/Al2O3 负载型催化剂的制备及其用于水合肼分解制氢性能[J]. 金属学报, 2023, 59(10): 1335-1345.
[8] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[9] 郭璐, 朱乾科, 陈哲, 张克维, 姜勇. Fe76Ga5Ge5B6P7Cu1 合金的非等温晶化动力学[J]. 金属学报, 2022, 58(6): 799-806.
[10] 王江伟, 陈映彬, 祝祺, 洪哲, 张泽. 金属材料的晶界塑性变形机制[J]. 金属学报, 2022, 58(6): 726-745.
[11] 唐帅, 蓝慧芳, 段磊, 金剑锋, 李建平, 刘振宇, 王国栋. 铁素体区等温过程中Ti-Mo-Cu微合金钢中的共析出行为[J]. 金属学报, 2022, 58(3): 355-364.
[12] 李海勇, 李赛毅. Al <111>对称倾斜晶界迁移行为温度相关性的分子动力学研究[J]. 金属学报, 2022, 58(2): 250-256.
[13] 朱士泽, 王东, 王全兆, 肖伯律, 马宗义. Cu含量对SiC/Al-Mg-Si-Cu复合材料自然时效负面效应的影响[J]. 金属学报, 2021, 57(7): 928-936.
[14] 许坤, 王海川, 孔辉, 吴朝阳, 张战. 一种新分组团簇动力学模型模拟铝合金中的Al3Sc析出[J]. 金属学报, 2021, 57(6): 822-830.
[15] 侯玉柏, 于月光, 郭志猛. W-Ni-Fe三元合金等离子球化过程的SPH仿真研究[J]. 金属学报, 2021, 57(2): 247-256.