Please wait a minute...
金属学报  2013, Vol. 49 Issue (12): 1567-1572    DOI: 10.3724/SP.J.1037.2013.00141
  论文 本期目录 | 过刊浏览 |
一种含Pt镍基单晶高温合金的凝固行为
林惠文,周亦胄,张炫,金涛,孙晓峰
中国科学院金属研究所, 沈阳 110016
SOLIDIFICATION BEHAVIOR OF A Pt—CONTAININ Ni—BASED SINGLE CRYSTAL SUPERALLOY
LIN Huiwen, ZHOU Yizhou, ZHANG Xuan, JIN Tao, SUN Xiaofeng
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

林惠文,周亦胄,张炫,金涛,孙晓峰. 一种含Pt镍基单晶高温合金的凝固行为[J]. 金属学报, 2013, 49(12): 1567-1572.
LIN Huiwen, ZHOU Yizhou, ZHANG Xuan, JIN Tao, SUN Xiaofeng. SOLIDIFICATION BEHAVIOR OF A Pt—CONTAININ Ni—BASED SINGLE CRYSTAL SUPERALLOY[J]. Acta Metall Sin, 2013, 49(12): 1567-1572.

全文: PDF(1895 KB)  
摘要: 

以一种第三代镍基单晶高温合金为载体, 通过添加不同含量的Pt,研究了Pt对单晶高温合金凝固特性的影响规律. 结果表明,Pt的添加使合金元素的偏析程度加大, 共晶含量增大, 固溶热处理窗口变窄.由于Pt添加使得合金难以通过固溶热处理消除凝固形成的成分偏析,因此有可能对合金的力学性能产生不利影响.

关键词 Pt镍基单晶高温合金凝固行为    
Abstract

The Ni—based single crystal superalloy is the primary material for the manufacture of blades of the advanced areoengine and gas turbine. As the alloying design theory improved, the concentration of refractory elements increased and some new elements were introduced. Among these refractory elements, Ru became a fresh and sign element which was introduced into the fourth generation Ni—based single crystal superalloy. A large amount of research had indicated that Ru, as a member of Platinum group metals (PGMs), had played a significant role on the enhancement of phase stability and rupture life for Ni—based single crystal superalloy. Inspired by these works, other PGMs like Pt have been suggested to be the major alloying elements of the next generation advanced Ni—based single crystal superalloy. But the research for the effects of Pt addition on solidification behavior or creep property of the single crystal superalloy is rare. To explore the possibility of Pt using as a major alloying element, the present work investigated the influence of Pt on the solidification behavior of the Ni—based single crystal superalloy. Directional solidification method was used to grow the single crystal. DTA and EPMA were used to determine the effect of Pt on the phase transition temperatures and composition variety, respectively. In addition, OM and SEM were used to show the phases morphology. Some results are described as follow. Firstly, it has been found that the addition of Pt changes the eutectic morphology and increases eutectic fraction. Grid—like eutectic increases with the addition of Pt. Secondly, Pt promotes not only the segregation of refractory elements but also the eutectic—forming element Al. In addition, Pt prefers to segregate to the interdendritic region and is able to form an ordered Pt3Al phase with Al which may be a reason for the increase of eutectic fraction. But Pt reduces the segregation of Mo element whose content is a sensitive factor for the formation of the topological close—packed (TCP) phase. Thirdly, Pt decreases initial melting temperature and enhancesγ′phase precipitation temperature; thereby reduces the solution heat treatment window  of the alloys. The solution heat treatment of the alloys therefore becomes more difficult. Since the element segregation is hard to be eliminated by heat treatment in the Pt—containing alloys, Pt addition may be harmful for the mechanical properties of single crystal superalloy. The effects of Ru addition on the solidification behavior of the Ni—based single crystal superalloy will be also discussed for comparison.

Key wordsPt    Ni—based single crystal superalloy    solidification behavior
收稿日期: 2013-03-27     
基金资助:

国家自然科学基金项目 U1037601和51271186, 国家重点基础研究发展计划项目2010CB631206及中国科学院百人计划项目资助

作者简介: 林惠文, 男, 1986年生, 硕士

[1] Mughrabi H, Tetzlaff U.  Adv Eng Mater, 2000; 2: 319
[2] Wang J, Zhou L Z, Sheng L Y, Guo J T.  Mater Des, 2012; 39: 55
[3] Acharya M V, Fuchs G E.   Mater Sci Eng, 2004; A381: 143
[4] Ma W Y, Han Y F, Li S S, Zheng Y R, Gong S K.  Acta Metall Sin, 2006; 42: 1191
(马文友, 韩雅芳, 李树索, 郑运荣, 宫声凯. 金属学报, 2006; 42: 1191
[5] Kearsey R M, Beddoes J C, Jaansalu K M, Thompson W T, Au P.In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds.,Superalloys 2004, Warrendale: TMS, 2004: 801
[6] Reed R C.  Superalloys: Fundamentals and Applications.Cambride: Cambridge University Press, 2006: 147
[7] Cetel A D, Duhl D N. In: Antolovich S D, Stusrud R W, Mackay R A, Anton D L,Khan T, Kissinger R D, Klarstrom D L eds.,  Superalloys 1992, Warrendale: TMS, 1992: 287
[8] Erickson G L. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V,Pollock T M, Woodford D A eds.,  Superalloys 1996, Warrendale: TMS, 1996: 35
[9] Walston W S, O'Hara K S, Ross E W, Pollock T M, Murphy W H.In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds.,Superalloys 1996, Warrendale: TMS, 1996: 27
[10] Rae C M F, Karunaratne M S A, Small C J, Broomfield R W, Jones C N, Reed R C.In: Pollock T M, Kissinger R D, Bowman R R, Green K A, Mclean M, Olson S L, Schirra J J eds.,Superalloys 2000, Warrendale: TMS, 2000: 767
[11] O'hara K S, Walston W S, Ross E W, Darolia R.   US Pat, 5482789, 1996
[12] Ofori A P, Rossouw C J, Humphreys C J.   Acta Mater, 2005; 53: 97
[13] Heckl A, Neumeier S, Cenanovic S, Goken M, Singer R F.   Acta Mater, 2011; 59: 6563
[14] Sato A, Harada H, Yokokawa T, Murakumo T, Koizumi Y, Kobayashi T, Imai H.Scr Mater, 2006; 54: 1679[15] Tin S, Yeh A C, Ofori A P, Reed R C, Babu S S, Miller M K. In: Green K A,Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds.,Superalloys 2004, Warrendale: TMS, 2004: 735
[16] Van Sluytman J S, La Fontaine A, Cairney J M, Pollock T M.   Acta Mater, 2010; 58: 1952
[17] Yokokawa T, Osawa M, Nishida K, Kobayashi T, Koizumi Y, Harada H.  Scr Mater, 2003; 49: 1041
[18] Ofori A P, Humphreys C J, Tin S, Jones C N. In: Green K A, Pollock T M,Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds.,Superalloys 2004,  Warrendale: TMS, 2004: 787
[19] Murakami H, Koizumi Y, Yokokawa T, Yamabe M Y, Yamagata T, Harada H. Mater Sci Eng, 1998; A250: 109
[20] Van Sluytman J S, Suzuki A, Bolcavage A, Helmink R C, Ballard D L,Pollock T M. In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S eds., Superalloys 2008, Warrendale: TMS, 2008: 499
[21] Heidloff A J, Van Sluytman J S, Pollock T M, Gleeson B.   Metall Mater Trans,2009; 40A: 1529
[22] Zheng L, Gu C Q, Zheng Y R.   Chin J Nonferrous Met, 2002; 12: 1199
(郑亮, 谷臣清, 郑运荣. 中国有色金属学报, 2002; 12: 1199)
[23] Liu G, Liu L, Zhang S X, Yang C B, Zhang J, Fu H Z.   Acta Metall Sin, 2012; 48: 845
(刘刚, 刘林, 张胜霞, 杨初斌, 张军, 傅恒志. 金属学报, 2012; 48: 845)
[24] Heckl A, Rettig R, Singer R F.  Metall Mater Trans, 2009; 41A: 202
[25] Karunaratne M S A, Rae C M F, Reed R C. Metall Mater Trans, 2001; 32A: 2409
[26] Karunaratne M S A, Cox D C, Carter P, Reed R C. In: Reed R C, Green K A,Caron P, Gabb T P, Fahrmann M G, Huron E S eds.,   Superalloys 2000,Warrendale: TMS, 2000: 263

[1] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[3] 张子轩, 于金江, 刘金来. 镍基单晶高温合金DD432的持久性能各向异性[J]. 金属学报, 2023, 59(12): 1559-1567.
[4] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[5] 王迪, 王栋, 谢光, 王莉, 董加胜, 陈立佳. Pt-Al涂层对一种镍基单晶高温合金抗热腐蚀行为的影响[J]. 金属学报, 2021, 57(6): 780-790.
[6] 徐静辉, 李龙飞, 刘心刚, 李辉, 冯强. 热力耦合对一种第四代镍基单晶高温合金1100℃蠕变组织演变的影响[J]. 金属学报, 2021, 57(2): 205-214.
[7] 和思亮, 赵云松, 鲁凡, 张剑, 李龙飞, 冯强. 热等静压对铸态及固溶态第二代镍基单晶高温合金显微缺陷及持久性能的影响[J]. 金属学报, 2020, 56(9): 1195-1205.
[8] 徐秀月, 李艳辉, 张伟. Fe(Pt, Ru)B非晶带材脱合金制备纳米多孔PtRuFe及其甲醇电催化性能[J]. 金属学报, 2020, 56(10): 1393-1400.
[9] 胡斌,李树索,裴延玲,宫声凯,徐惠彬. <111>取向小角偏离对一种镍基单晶高温合金蠕变性能的影响[J]. 金属学报, 2019, 55(9): 1204-1210.
[10] 马晋遥,王晋,赵云松,张剑,张跃飞,李吉学,张泽. 一种第二代镍基单晶高温合金1150 ℃原位拉伸断裂机制研究[J]. 金属学报, 2019, 55(8): 987-996.
[11] 张可, 孙新军, 张明亚, 李昭东, 叶晓瑜, 朱正海, 黄贞益, 雍岐龙. Ti-V-Mo复合微合金钢中(Ti, V, Mo)C在γ /α中沉淀析出的动力学[J]. 金属学报, 2018, 54(8): 1122-1130.
[12] 张宇, 王清, 董红刚, 董闯, 张洪宇, 孙晓峰. 基于团簇模型设计的镍基单晶高温合金(Ni, Co)-Al-(Ta, Ti)-(Cr, Mo, W)及其在900 ℃下1000 h的长期时效行为[J]. 金属学报, 2018, 54(4): 591-602.
[13] 蒋成洋, 阳颖飞, 张正义, 鲍泽斌, 朱圣龙, 王福会. 一种Zr改性双相PtAl2+(Ni, Pt)Al涂层的制备及热腐蚀行为研究[J]. 金属学报, 2018, 54(4): 581-590.
[14] 郭静, 李金国, 刘纪德, 黄举, 孟祥斌, 孙晓峰. 低偏析异质籽晶制备单晶高温合金的籽晶熔合区形成机制研究[J]. 金属学报, 2018, 54(3): 419-427.
[15] 马殿国,王英敏,李艳辉,张伟. Co含量对熔体快淬Fe55-xCoxPt15B30合金的组织结构与磁性能的影响[J]. 金属学报, 2017, 53(5): 609-614.