Please wait a minute...
金属学报  2013, Vol. 49 Issue (3): 271-276    DOI: 10.3724/SP.J.1037.2012.00480
  论文 本期目录 | 过刊浏览 |
X90级别第三代管线钢的力学性能与组织特征
夏佃秀1,2,王学林1,3,李秀程1,由洋1,尚成嘉1
1) 北京科技大学材料科学与工程学院, 北京 100083
2) 济钢集团有限公司技术中心, 济南 250101
3) 江苏省 (沙钢) 钢铁研究院, 张家港 215625
PROPERTIES AND MICROSTRUCTURE OF THIRDGENERATION X90 PIPELINE STEEL
XIA Dianxiu1,2, WANG Xuelin1,3, LI Xiucheng1, YOU Yang1, SHANG Chengjia1
1) School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
2) Technology Center, Jinan Iron & Steel Group Company, Limited, Jinan 250101
3) Institute of Research of Iron and Steel, Shasteel, Zhangjiagang 215625
引用本文:

夏佃秀,王学林,李秀程,由洋,尚成嘉. X90级别第三代管线钢的力学性能与组织特征[J]. 金属学报, 2013, 49(3): 271-276.
XIA Dianxiu, WANG Xuelin, LI Xiucheng, YOU Yang, SHANG Chengjia. PROPERTIES AND MICROSTRUCTURE OF THIRDGENERATION X90 PIPELINE STEEL[J]. Acta Metall Sin, 2013, 49(3): 271-276.

全文: PDF(1121 KB)  
摘要: 

对工业实验生产的X90级第三代管线钢的力学性能与组织特征进行了研究. 结果表明, 工业试生产的18.4 mm厚X90管线钢板微观组织是以准多边形铁素体、板条贝氏体及其中的M/A (马氏体/奥氏体) 为主的多相组织. 钢板的屈服强度达到615-660 MPa, 抗拉强度达到720 MPa以上, 屈强比不大于0.9, -30 ℃冲击功达到200 J, -15 ℃落锤撕裂实验 (DWTT)韧性剪切面积大于80%. 实验钢中“软相”(准多边形铁素体) 与“硬相” (板条贝氏体) 的比例约为3∶2, 板条贝氏体组织位错密度高, 而准多边形铁素体的位错密度较低. EBSD结果表明, 工业实验钢“硬相”组织中的板条之间呈现切变转变特征, 已达到软硬相多相组织的调控效果.

关键词 第三代管线钢多相组织X90力学性能    
Abstract

The mechanical properties and microstructure of the TG (third generation) X90 pipeline steelswhich have been industrially trial-produced were investigated. The results showed that the microstructure of the18.4 mm thick X90 pipeline steels consist of quasi-polygonal ferrite, lath bainite and M/A (martenite/austenite) island. The yield strength was between 615 and 660 MPa, and the tensile strength was above 720 MPa, and theyield ratio was below 0.9, the impact absorbed energy at --30 ℃ was over 200 J, and the shearing area ofdrop-weight tear test (DWTT) at -15 ℃ was more than 80%. The ratio of the soft phase (quasi-polygonal ferrite)and the hard phase (lath bainite) was about 3∶2, and the dislocation density in the lath bainite was higher, whilethat in the quasi-polygonal ferrite was lower. The EBSD results showed that the lath of the hard phase met theshear transformation characteristics, indicating that the effect of microstructure control on hard and soft phase has been achieved.

Key wordsthird generation pipeline steel    multi-phases    X90    mechanical property
    
基金资助:

国家重点基础研究发展计划资助项目2010CB630801

作者简介: 夏佃秀, 女, 1968年生, 博士生

[1] Ishikawa N, Okastu M, Endo S, Kondo J.6thInt Pipeline Conf, Calgary: AMSE, 2006: 1


[2] Shang C J, Wang X M, Liu Q Y, Fu J Y.Int Seminar on Welding of Pipeline Steel, Arasa: December, 2011

[3] Ishikawa N, Endo S, Kondo J.JFE Technol Report, 2006; 7: 20

[4] Okatsu M, Shikanai N, Kondo J.JFE Technol Report, 2008; 12: 8

[5] Zheng L, Fu J Y.Iron Steel, 2006; 41: 1

(郑磊, 付俊岩. 钢铁, 2006; 41: 1)

[6] Suzuki N, Masamura K.Pipeline Technology Conference, Ostend:

LaboratoriumSoete and TI-KVIV, 2009: 1

[7] Zheng L, Gao S.In the Development of High Performance Pipeline Steel in China.

Beijing: Petroleum Storage & Transformation Committee Of China Petroleum Society, 2008: 95

(郑磊, 高珊. 北京管线钢国际研讨会论文集. 北京: 中国石油学会石油储运委员会, 2008: 95)

[8] Li H L, Ji L K.World Iron Steel, 2009; (1): 56

(李鹤林, 吉玲康. 世界钢铁, 2009; (1): 56)

[9] Sun X J, Li Z D, Yong Q L, Yang Z G, Weng Y Q.Sci China TechnolSci, 2012; 55: 1797

[10] Nie W J, Shang C J, Guan H L, Zhang X B, Chen S H.ActaMetall Sin, 2012; 48: 298

(聂文金, 尚成嘉, 关海龙, 张晓兵, 陈少慧. 金属学报, 2012; 48: 298)

[11] Nie W J, Shang C J, You Y, Zhang X B, Subramanian S V.ActaMetall Sin, 2012; 48: 797

(聂文金, 尚成嘉, 由洋, 张晓兵, Subramanian S V. 金属学报, 2012; 48: 797)

[12] Nie W J, Wang X M, Wu S J, Guan H L, Shang C J.Sci China TechnolSci, 2012; 55: 1791

[13] Li X C, Xia D X, Wang X L, Wang X M, Shang C J.Sci China TechnolSci, 2012; 55: 1

[14] Shang C J.Echnology Forum on High Grade Pipeline Steels for Oil & Gas Industry-New Challenges

for Steels from Strategic Demand of Exploration and Transportation of Oil & Gas, Beijing: Chinese Society

for Metals (CSM), 2011: 55

(尚成嘉. 石油天然气用高性能钢技术论坛-油气开采、储运的战略需求对钢铁材料的新挑战, 北京: 中国金属学会, 2011: 55)

[15] Bhadeshia H D K H.Bainite in Steels. 2nd Ed., London: The Cambridge University Press, 2001: 142

[16] Miao C L, Shang C J, Zhang G D, Subramanian S V.Mater SciEng, 2010; A527: 4985

[17] Miao C L, Shang C J, Zurob H S, Zhang G D, Subramanian S V.Metall Mater Trans, 2012; 43A: 665

[18] He X L, Shang C J.High Performance Low Carbon Bainte Steel. Beijing: Metallugical Industry Press, 2008: 148

(贺信莱, 尚成嘉. 高性能低碳贝氏体钢. 北京: 冶金工业出版社, 2008: 148)

[19] Diazfuentes M, Izamendia A, Gutierrez I.Metall Mater Trans, 2003; 34A: 2005

[20] Miao C L, Shang C J, Wang X M, Zhang L F, Subramanian S V.ActaMetall Sin, 2010; 46: 545

(缪成亮, 尚成嘉, 王学敏, 张龙飞, Subramanian S V. 金属学报, 2010; 46: 545)

[21] You Y, Shang C J, Chen L, Subramanian S V.Mater SciEng, 2012; A546: 111

[22] Miyamoto N, Takayama G, Furuhara T.Scr Mater, 2009; 60: 1113

[23] Kitahara H, Ueji R, Tsuji N, Minamino Y.Acta Mater, 2006; 54: 1279

[24] Miao C L, Shang C J, Subramanian S V.J UnivSciTechnol Beijing, 2012; 34: 289

(缪成亮, 尚成嘉, Subramanian S V. 北京科技大学学报, 2012; 34: 289)

[25] Cui G B, Guo H, Yang S W, He X L.ActaMetall Sin, 2009; 45: 680

(崔桂彬, 郭晖, 杨善武, 贺信莱. 金属学报, 2009; 45: 680)

[26] Guo Z, Lee C S, Morris J W.Acta Mater, 2004; 52: 5511

[27] Morris J W, Lee C S, Guo Z.ISIJ Int, 2003; 43: 410

[28] Kumar A, Si

[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[11] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[14] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[15] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.