Please wait a minute...
金属学报  2012, Vol. 48 Issue (12): 1431-1436    DOI: 10.3724/SP.J.1037.2012.00416
  论文 本期目录 | 过刊浏览 |
不锈钢薄板高速激光焊驼峰焊道形成倾向及其影响因素
裴莹蕾1,单际国1,2,任家烈1
1. 清华大学机械工程系, 北京 100084\par
2. 清华大学 先进成形制造教育部重点实验室, 北京 100084
STUDY OF HUMPING TENDENCY AND AFFECTING FACTORS IN HIGH SPEED LASER WELDING OF STAINLESS STEEL SHEET
PEI Yinglei 1, SHAN Jiguo 1,2, REN Jialie 1
1. Department of Mechanical Engineering, Tsinghua University, Beijing 100084
2. Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Tsinghua University, Beijing 100084
引用本文:

裴莹蕾 单际国 任家烈. 不锈钢薄板高速激光焊驼峰焊道形成倾向及其影响因素[J]. 金属学报, 2012, 48(12): 1431-1436.
PEI Yinglei SHAN Jiguo REN Jialie. STUDY OF HUMPING TENDENCY AND AFFECTING FACTORS IN HIGH SPEED LASER WELDING OF STAINLESS STEEL SHEET[J]. Acta Metall Sin, 2012, 48(12): 1431-1436.

全文: PDF(2724 KB)  
摘要: 

研究了SUS304不锈钢薄板光纤激光焊接时激光功率、焊接速度、保护气对焊道驼峰倾向的影响规律,利用Ti示踪元素和CCD图像, 考察了熔池的流动状态. 结果表明, 焊道驼峰倾向对激光功率不敏感; 当焊接速度超过18 m/min时, 焊缝出现驼峰现象, 且驼峰倾向随着焊接速度的提高而增大; 当焊接速度和功率一定时, 不同保护气流方向的焊缝驼峰倾向有明显差异, 与焊接方向同向吹送保护气有助于降低驼峰倾向. 分析认为, 焊接速度的提高使熔池流动更加剧烈, 进而增加了驼峰倾向; 与焊接方向反向吹送保护气体, 焊缝几何形状呈“柱状”, 与焊接方向同向吹送保护气体, 焊缝的几何形状呈“杯状”, “杯状”焊缝增加了U形区域的截面积, 降低了熔池流动的剧烈程度, 进而降低了驼峰倾向. 通过调整保护气流方向改变焊缝的几何形状以增加U形区域的截面积, 是降低驼峰倾向的可行途径.

关键词 高速激光焊 驼峰倾向 熔池流动 焊接工艺 奥氏体不锈钢    
Abstract

The fiber laser was used to weld austenitic stainless steel SUS304 sheet at the speed of 24 m/min. The effects of laser power, welding speed and shielding gas on humping tendency have been investigated. The melt flow in the molten pool under different welding parameters was studied by Ti tracer method and CCD visual detection system. The results show that the humping tendency is not sensitive to the laser power. The humping is formed when welding speed exceeds 18 m/min, and goes up with the increasing of welding speed. The humping tendency is completely different as changing the direction of shielding gas under constant welding speed and laser power, and it is reduced when the shielding gas direction follows the welding direction. It can be explained that, with the increasing of welding speed, the melt flow becomes fierce, and the humping tendency goes up. The weld shape turns to the "columnar weld", when the shielding gas direction against the welding direction; the weld shape turns to the "cup weld" when the shielding gas direction follows the welding direction. The "cup weld" expanded "U area" which gentles the melt flow and reduces humping tendency. Therefore, adjusting the shielding gas direction to expand the "U area" is an effective approach to reduce the humping tendency.

Key wordshigh speed laser welding    humping tendency    melt flow in the molten pool    welding process    austenitic stainless steel
收稿日期: 2012-07-11     
ZTFLH:  TG456.7  
作者简介: 裴莹蕾, 男, 1985年生, 博士生

[1] Albright C E, Chiang S. In: Santa C ed., ICALEO’88 proceedings, Berlin/IFS: Springer, 1988: 207

[2] Nguyen T C, Weckman D C, Johnson D A, Kerr H W. Sci Technol Weld Join, 2006; 11: 618

[3] Wei P S. J Heat Transfer, 2011; 133: 031005–1

[4] Nguyen T C, Weckman D C. Sci Technol Weld Join, 2005; 10: 447

[5] Nguyen T C, Weckman D C. Johmson D A. Weld J, 2007; 86: 360

[6] Hu Z K, Wu C S. Acta Metall Sin, 2008; 44: 1445

(胡志坤, 武传松. 金属学报, 2008; 44: 1445)

[7] Chen J, Wu C S. Acta Metall Sin, 2009; 45: 1070

(陈姬, 武传松. 金属学报, 2009; 45: 1445)

[8] Wu C S, Hu Z K, Zhang Y M. Proc Inst Mech Eng, 2009; 233B: 751

[9] Ueyama T, Ohnawa T, Tanaka M, Nakata K. Sci Technol Weld Join, 2005; 10: 750

[10] Soderstrom E, Mendez P. Sci Technol Weld Join, 2006; 11: 572

[11] Cho M H, Farson D F. Metall Mater Trans, 2007; 38B: 305

[12] Fabbro R. J Phys, 2010; 43D: 445501

[13] Katayama S, Yoheia A, Mizutania M, Kawahitoa Y. In:Elsevier P O ed., Lasers in Manufacturing 2011–Proc 6th Int WLT Conference on Lasers in Manufacturing, Netherlands:

Physics Procedia, 2011: 75

[14] Kawahito Y, Mizutani M, Katayama S. J Phys, 2007; 40D: 5854

[15] Wei P S, Chuang K C, Ku J S, Debory T. IEEE Trans Comp Packag Manufact Technol, 2012; 2: 383

[16] Kawahito Y, Mizutani M, Katayama S. Sci Technol Weld Join, 2009; 14: 588

[17] Zhang L J, Zhang J X, Wang R, Gong S L. Rare Met Mater Eng, 2006; S2: 39

(张林杰, 张建勋, 王蕊, 巩水利. 稀有金属材料与工程, 2006; S2: 39)

[18] Berger P, H¨ugel H, Hess A, Weber R, Graf T. In: Elsevier P O ed., Lasers in Manufacturing 2011 – Proc 6th Int WLT Conferenceon Lasers in Manufacturing, Netherlands: Physics Procedia, 2011: 232

[19] Eriksson I, Powell J, Kaplan A F H. Sci Technol Weld Join, 2011; 16: 636

[20] Chen J. PhD Thesis, Shandong University, Jinan, 2009

(陈姬. 山东大学博士学位论文, 济南, 2009)

[21] Amara E H, Fabbro R. Appl Phys, 2010; 101A: 111

[22] Mendez P F, Eagar T W. Weld J, 2003; 82: 296

[23] Bradstreet B J. Weld J, 1968; 47: 314

[24] Gratzke U, Kapadia P D, Dowden J, Kroos J, Simon G. J Phys, 1992; 25D: 1640

[25] Kumar A, Debroy T. Weld J, 2006; 85: 292

[1] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[2] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[3] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[4] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[5] 曹超, 蒋成洋, 鲁金涛, 陈明辉, 耿树江, 王福会. 不同Cr含量的奥氏体不锈钢在700℃煤灰/高硫烟气环境中的腐蚀行为[J]. 金属学报, 2022, 58(1): 67-74.
[6] 潘庆松, 崔方, 陶乃镕, 卢磊. 纳米孪晶强化304奥氏体不锈钢的应变控制疲劳行为[J]. 金属学报, 2022, 58(1): 45-53.
[7] 王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.
[8] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[9] 彭云,宋亮,赵琳,马成勇,赵海燕,田志凌. 先进钢铁材料焊接性研究进展[J]. 金属学报, 2020, 56(4): 601-618.
[10] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[11] 张乐,王威,M. Babar Shahzad,单以银,杨柯. 新型多层金属复合材料的制备与性能[J]. 金属学报, 2020, 56(3): 351-360.
[12] 彭剑,高毅,代巧,王颖,李凯尚. 316L奥氏体不锈钢非对称载荷下的疲劳与循环塑性行为[J]. 金属学报, 2019, 55(6): 773-782.
[13] 秦凤明, 李亚杰, 赵晓东, 何文武, 陈慧琴. 含N量对Mn18Cr18N奥氏体不锈钢的析出行为及力学性能的影响[J]. 金属学报, 2018, 54(1): 55-64.
[14] 王大伟,修世超. 焊接温度对碳钢/奥氏体不锈钢扩散焊接头界面组织及性能的影响[J]. 金属学报, 2017, 53(5): 567-574.
[15] 陈思含,梁田,张龙,马颖澈,刘政军,刘奎. 6%Si高硅奥氏体不锈钢固溶处理过程中bcc相的演变机制研究[J]. 金属学报, 2017, 53(4): 397-405.