Please wait a minute...
金属学报  2012, Vol. 48 Issue (12): 1415-1421    DOI: 10.3724/SP.J.1037.2012.00348
  论文 本期目录 | 过刊浏览 |
轧制工艺对铁素体基Ti-Mo微合金钢纳米尺度碳氮化物析出行为的影响
孙超凡,蔡庆伍,武会宾,毛红艳,陈宏振
北京科技大学高效轧制国家工程研究中心, 北京 100083
EFFECT OF CONTROLLED ROLLING PROCESSING ON NANOMETER–SIZED CARBONITRIDE OF Ti–Mo FERRITE MATRIX MICROALLOYED STEEL
SUN Chaofan, CAI Qingwu, WU Huibin, MAO Hongyan, CHEN Hongzhen
National Engineering Research Center of Advanced Rolling, University of Science and Technology Beijing, Beijing 100083
引用本文:

孙超凡 蔡庆伍 武会宾 毛红艳 陈宏振. 轧制工艺对铁素体基Ti-Mo微合金钢纳米尺度碳氮化物析出行为的影响[J]. 金属学报, 2012, 48(12): 1415-1421.
SUN Chaofan CAI Qingwu WU Huibin MAO Hongyan CHEN Hongzhen. EFFECT OF CONTROLLED ROLLING PROCESSING ON NANOMETER–SIZED CARBONITRIDE OF Ti–Mo FERRITE MATRIX MICROALLOYED STEEL[J]. Acta Metall Sin, 2012, 48(12): 1415-1421.

全文: PDF(1133 KB)  
摘要: 

采用SEM, TEM和物理化学相分析等方法对铁素体基Ti-Mo微合金钢在2种不同轧制工艺下的析出相分布和粒度进行了观察和统计, 结合热力学和动力学计算研究了γ相区变形过程中形变储能对诱导析出的影响, 分析了γ相区形变诱导析出量对后续γ→α相变以及相变后α相基体中继续析出时析出相的临界晶核尺寸、相对形核率和相对沉淀开始时间的影响.结果表明, 在总变形量相同的情况下, 与γ相再结晶区和未再结晶区两阶段轧制相比较, 采用γ相再结晶区单阶段轧制更有利于获得析出量大、尺度分布均匀的个位纳米级碳氮化物, 这类碳氮化物占析出物总量的75%(质量分数).

关键词 轧制工艺 Ti-Mo微合金钢 形变储能 纳米尺度碳氮化物    
Abstract

Single nanometer–sized particles, which are smaller than 10 nm, can significantly enhance the precipitation strengthening in microalloyed steels, thus causing their strength to be promoted greatly. In order to improve the strength of the steel, it is quite necessary to get a large amount of single nanometer–sized particles through optimizing rolling technology. In this work, the effects of two different kinds of controlled rolling technologies on the size and distribution of precipitated particles in the Ti–Mo ferritie matrix microalloyed steel have been researched using SEM, TEM and small–angle X–ray scattering. The results show that with the same total rolling reduction, the steel rolled only in γ phase crystallization zone can obtain a higher portion of single nanometer–sized particles than that rolled respectively in phase recrystallization and nonrecrystallization zones, in which those single nanometer–sized particles account for about 75% (mass fraction) of whole precipitated particles. In order to study the effect of deformation potency in γ phase zone on the amount of precipitates in phase and the micro–crystal size, nucleation rate and incubation time of following precipitates in γ→α transformation and ferritie matrix after γ→α transformation, some thermodynamics and kinetics calculations and analysis on precipitation are also conducted.

Key wordscontrolled rolling processing    Ti–Mo microalloyed steel    deformation potency    nanometer–sized carbonitride
收稿日期: 2012-06-12     
ZTFLH:  TG142.2  
基金资助:

国家自然科学基金资助项目51274036

作者简介: 孙超凡, 男, 1987年生, 硕士生

[1] Funakawa Y, Shiozaki T, Tomita K, Yamamoto T, Maeda E. ISIJ Int, 2004; 44: 1945

[2] Chen C Y, Yen H W, Kao F H, Li W C, Huang C Y, Yang J R, Wang S H. Mater Sci Eng, 2009; A499: 162

[3] Funakawa Y, Seto K. Mater Sci Forum, 2007; 539–543: 4813

[4] Duan X G, Cai Q W, Wu H B. Acta Metall Sin, 2011; 47:251

(段修刚, 蔡庆伍, 武会宾. 金属学报, 2011; 47: 251)

[5] Jung J G, Park J S, Kim J, Lee Y K. Mater Sci Eng, 2011; A528: 5529

[6] Craven A J, He K, Garvie L A J, Baker T N. Acta Mater, 2000; 48: 3857

[7] Niu T, Kang Y L, Gu H W, Yin Y Q, Qiao M L. J IronSteel Res Int, 2010; 17: 73

[8] Hong S G, Kang K B, Park C G. Scr Mater, 2002; 46: 163

[9] Hu B H. Master Dissertation, University of Science and Technology Beijing, 2012

(胡彬浩. 北京科技大学硕士学位论文, 2012)

[10] Okamoto R, Borgenstam A, Agren J. Acta Mater, 2010; 58: 4783

[11] Okamoto R, Agren J. Acta Mater, 2010; 58: 4791

[12] Duan X G, Cai Q W, Wu H B, Tang D. J Univ Sci Technol Beijing, 2012; 34: 644

(段修刚, 蔡庆伍, 武会宾, 唐荻. 北京科技大学学报, 2012; 34: 644)

[13] Pickering F B. Physical Metallurgy and the Design of Steels. London: Applied Science Publishing Ltd, 1978: 63

[14] Duan X G. PhD Thesis, University of Science and Technology Beijing, 2012

(段修刚. 北京科技大学博士学位论文, 2012)

[15] Cao J C. PhD Thesis, Kunming University of Science and Technology, 2006

(曹建春. 昆明理工大学博士学位论文, 2006)

[16] Yong Q L. Secondary Phase in Steel. Beijing: Metallurgical Industry Press, 2006: 1

(雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 1)

[17] Zhang L Z, Zhao X M, Wu D, Xu Y B. J Iron Steel Res, 2006; 18(4): 41

(张良哲, 赵宪明, 吴迪, 许云波. 钢铁研究学报, 2006; 18(4): 41)

[18] Zhang L, Xue C X, Yang W Y, Sun Z Q. Acta Metall Sin, 2007; 43: 791

(张玲, 薛春霞, 杨王月,孙祖庆. 金属学报, 2007; 43: 791)

[19] Yong Q L, Chen M X, Pei H Z, Pan L, Zhou X L, Yang T W, Zhong W, Hao J Y. J Iron Steel Res, 2006; 18(3): 30

(雍岐龙, 陈明昕, 裴和中, 潘俐, 周晓玲, 杨天武, 钟卫, 郝建英. 钢铁研究学报, 2006; 18(3): 30)

[20] Funakawa Y. Mater Sci Forum, 2012; 706–709: 2096

[1] 陈玉勇, 叶园, 孙剑飞. TiAl合金板材轧制研究现状[J]. 金属学报, 2022, 58(8): 965-978.
[2] 顾晨, 杨平, 毛卫民. 轧制工艺对低牌号无取向电工钢相变退火组织、织构与磁性能的影响[J]. 金属学报, 2019, 55(2): 181-190.