Please wait a minute...
金属学报  2012, Vol. 48 Issue (10): 1166-1174    DOI: 10.3724/SP.J.1037.2012.00173
  论文 本期目录 | 过刊浏览 |
17%Cr铁素体不锈钢中的第二相与织构
高飞1,  刘振宇1,  张维娜1,  刘海涛1, 孙广庭2, 王国栋1
1. 东北大学轧制技术及连轧自动化国家重点实验室, 沈阳 110819
2. 济钢集团工程技术有限公司, 济南250101
TEXTURES AND PRECIPITATES IN A 17%Cr FERRITIC STAINLESS STEELS
GAO Fei 1, LIU Zhenyu 1, ZHANG Weina 1, LIU Haitao 1, SUN Guangting 2,WANG Guodong 1
1. State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
2. Jigang International Engineering Technolgy Co. Ltd., Jinan 250101
引用本文:

高飞 刘振宇 张维娜 刘海涛 孙广庭 王国栋. 17%Cr铁素体不锈钢中的第二相与织构[J]. 金属学报, 2012, 48(10): 1166-1174.
GAO Fei LIU Zhenyu ZHANG Weina LIU Haitao SUN Guangting WANG Guodong. TEXTURES AND PRECIPITATES IN A 17%Cr FERRITIC STAINLESS STEELS[J]. Acta Metall Sin, 2012, 48(10): 1166-1174.

全文: PDF(3934 KB)  
摘要: 

通过工艺控制得到了不同尺寸及分布特征的析出相, 研究了其对再结晶织构的影响. 结果表明: 降低精轧温度有利于尺寸更加细小、分布更加弥散的析出相TiC的形成, 经冷轧及退火后这种析出相分布特征可遗传至冷轧退火板; 粗大、稀疏析出相的样品具有较强的γ纤维再结晶织构; 细小、弥散的析出相有助于随机取向再结晶晶核的形成, 抑制再结晶晶粒的长大, 从而弱化了γ纤维再结晶织构及恶化了冷轧退火板成形性能; 析出相对随机取向晶粒形核的作用及晶界迁移的钉扎作用是控制铁素体不锈钢再结晶织构的重要因素之一.

关键词 17%Cr铁素体不锈钢 析出相 织构 再结晶    
Abstract

Improved mechanical properties of ferritic stainless steels (FSSs), such as toughness and high temperature or creep resistance, have been attained through the addition of stabilizing elements such as Nb and/or Ti. Therefore, stabilized ferritic stainless steels are good candidates to replace the conventional Cr–Ni austenitic stainless steels for specific applications to save the higher price of Ni. As compared to austenitic stainless steels, however, ferritic stainless steels possess lower formability which is closely depends on the γ–fiber recrystallization texture. Hence, improvement of formability is desired for further wide applications of FSSs. The stabilizing effects of alloying elements work by consuming not only the interstitial atoms in solid solution but also forming the carbide and nitride precipitates such as TiC, TiN and NbC. The precipitation takes place in steel making processes such as slab reheating, hot rolling and coiling. The parameters involving these processes have their effects on the size, shape and distribution of the precipitates that influence the γ–fiber recrystallization texture. Many papers intended to clarify the effect of precipitates. However, there were differences concerning the effect of precipitates, which may hinder further improvement of formability. In the present paper, precipitate size and dispersion were changed by controlling hot rolling processes and the effect of precipitate size and dispersion on the development of recrystallizaton texture in a 17%Cr ferritic stainless steels was investigated. Mechanical properties were measured by tensile tests. The characteristics of precipitate were observed by transmission electron microscopy, and X–ray diffraction was used to characterize texture evolution processes. The results show that low temperature finish rolling promotes the formation of a large number of fine and dispersed TiC precipitates in the hot band. After rolling and annealing, the state of fine and dispersed precipitation can be inherited in the cold rolled and annealed sheets. Strong γ–fiber recrystallizaton texture is developed in the specimen with sparsely distributed and coarse precipitates. Fine and dispersed precipitates promote the nucleation of randomly oriented grains, strongly suppress the growth of recrystallized grain, and thereby weakening γ–fiber recrystallizaton texture and impairing the formability of the cold rolled and annealed sheets. The precipitates have significant effects on the nucleation of randomly oriented grains and pinning grain boundary mobility during recrystallization annealing after cold rolling, which plays an important roles in controlling the γ–fiber recrystallizaton texture in a ferritic stainless steels.

Key words17%Cr ferritic stainless steel    precipitate    texture    recrystallization
收稿日期: 2012-04-05     
ZTFLH:  TG113  
基金资助:

国家自然科学基金项目50734002和51004035, 以及中央高校基本科研业务费专项项目N100507002资助

作者简介: 高飞, 男, 1985年生, 博士生

[1] Yazawa Y, Ozaki Y, Kato Y. JSAE Rev, 2003; 24: 483

[2] Liu H T, Liu Z Y, Wang G D. ISIJ Int, 2009; 49: 890

[3] Miyamoto H, Xiao T, Uenoya T, Hatano M. ISIJ Int, 2010; 50: 1653

[4] Siqueira R P, Sandim H R Z, Oliveira T R. Mater Sci Eng, 2008; A497: 216

[5] Zhang C, Liu Z Y,Wang G D. J Mater Process Tech, 2011; 211: 1051

[6] Almagro J F, Llovet X, Heredia M A, Luna C, Sanchez R. Microchim Acta, 2008; 161: 323

[7] Raabe D, L¨ucke K. Scr Metall, 1992; 27: 1533

[8] Raabe D, H¨olscher M, Dubke M, Reher F, L¨ucke K. Steel Res, 1993; 64: 359

[9] Raabe D. J Mater Sci, 1996; 31: 3839

[10] H¨olscher M, Raabe D, L¨ucke K. Steel Res, 1991; 62: 567

[11] Raabe D, L¨ucke K. Scr Metall Mater, 1992; 26: 19

[12] Sinclair C W, Robaut F, Maniguet L, Mithieux J D, Schmitt J H, Brechet Y. Adv Eng Mater, 2003; 5: 570

[13] Sinclair C W, Mithieux J D, Schmitt J H, Brechet Y. Metall Mater Trans, 2005; 36A: 3205

[14] Zhang C. PhD Thesis, Northeastern University, Shenyang, 2011

(张驰. 东北大学博士学位论文, 沈阳, 2011)

[15] Barnett M R, Jonas J J. ISIJ Int, 1997; 37: 697

[16] Pandit A, Murugaiyan A, Saha Podder A, Haldar A, Bhattacharjee D, Chandra S, Ray R K. Scr Mater, 2005; 53: 1309

[17] Sun W P, Militaer M, Jonas J J. Metall Trans, 1992; 23A: 821

[18] Chang S K, Kang H J. Steel Res Int, 1995; 66: 463

[19] Liu H T. PhD Thesis, Northeastern University, Shenyang, 2009

(刘海涛. 东北大学博士学位论文, 沈阳, 2009)

[20] Gao F, Liu Z Y, Liu H T, Wang G D. Acta Metall Sin (Engl Lett), 2011; 24: 343

[21] Huh M Y, Engler O. Mater Sci Eng, 2001; A308: 74

[22] Uematsu Y, Yamazaki Y. Tetsu Hagane, 1992; 78: 632

[23] Park S H, Kim K Y, Lee Y D, Park C G. ISIJ Int, 2002; 42: 100

[24] Kang H G, Huh M Y, Park S H, Engler O. Steel Res Int, 2008; 79: 489

[25] Hamada J, Ono N, Inoue H. ISIJ Int, 2011; 51: 1740

[26] Liu H T, Ma D X, Liu Z Y, Wang G D. J Iron Steel Res, 2010; 22(8): 31

(刘海涛, 马东旭, 刘振宇, 王国栋. 钢铁研究学报, 2010; 22(8): 31)

[27] Satoh S, Obara T, Nishida K, Irie T. Trans ISIJ, 1986; 26: 838

[28] Huh M Y, Kim H C, Engler O. Steel Res, 2000; 71: 239

[29] Kubodera H, Inagaki H. Bull Jpn Inst Met, 1986; 7: 383

[30] Satoh S, Obara T, Tsunoyama K. Trans ISIJ, 1986; 26: 737

[31] Subramaniam S V, Prikryl M, Gaulin B D, Clifford D D, Benincasa S, Reilly I O’. ISIJ Int, 1994; 34: 61

[32] Zener C, Smith S C. Trans AIME, 1984; 175: 47

[33] Verbeken K, Kestens L, Jonas J J. Scr Mater, 2003; 48: 1457

[34] Ray R K, Jonas J J, Hook R E. Int Mater Rev, 1994; 39: 129

[35] Pereloma E V, Gazder A A, Jonas J J, Miller M K, Davies C H J. ISIJ Int, 2008; 48: 1443

[1] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[3] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[4] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[5] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[6] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[7] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[8] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[9] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[10] 李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.
[11] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[12] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[13] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[14] 胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP[J]. 金属学报, 2022, 58(11): 1519-1526.
[15] 杨平, 王金华, 马丹丹, 庞树芳, 崔凤娥. 成分对真空脱锰法相变控制高硅电工钢{100}织构的影响[J]. 金属学报, 2022, 58(10): 1261-1270.