Fe@Ag CORE–SHELL COMPOSITE PARTICLES" /> 填料形状对Fe@Ag核壳复合粒子的电磁特性的影响
Please wait a minute...
金属学报  2012, Vol. 48 Issue (8): 977-982    DOI: 10.3724/SP.J.1037.2012.00124
  论文 本期目录 | 过刊浏览 |
填料形状对Fe@Ag核壳复合粒子的电磁特性的影响
赵素玲1,2,陈晶1,2,王一龙1,3
1. 武汉理工大学材料复合新技术国家重点实验室, 武汉 430070
2. 武汉理工大学材料研究与测试中心, 武汉 430070
3. 武汉理工大学理学院, 武汉 430070
INFLUENCE OF THE SHAPE OF SHIELDING FILLERS ON ELECTROMAGNETIC PROPERTIES OF Fe@Ag CORE–SHELL COMPOSITE PARTICLES
ZHAO Suling 1,2, CHEN Jing 1,2, WANG Yilong 1,3
1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070
2. Center for Material Research and Testing, Wuhan University of Technology, Wuhan 430070
3. School of Sciences, Wuhan University of Technology, Wuhan 430070
引用本文:

赵素玲 陈晶 王一龙. 填料形状对Fe@Ag核壳复合粒子的电磁特性的影响[J]. 金属学报, 2012, 48(8): 977-982.
, , . INFLUENCE OF THE SHAPE OF SHIELDING FILLERS ON ELECTROMAGNETIC PROPERTIES OF Fe@Ag CORE–SHELL COMPOSITE PARTICLES[J]. Acta Metall Sin, 2012, 48(8): 977-982.

全文: PDF(1447 KB)  
摘要: 运用液相化学还原Ag技术, 制备了球形和片形2种Fe @Ag核壳复合粒子. 表征了这2种屏蔽填料的物相、表面形貌和化学组成, 研究了其静磁性能, 分析了填料的形状对复合材料的复磁导率、电导率和屏蔽效能等电磁特性的影响. 结果表明: 2种复合粒子均为核壳结构完整的Fe @Ag核壳复合粒子, 其Ag壳层均匀且致密; 球形和片形Fe @Ag核壳复合粒子均具有良好的软磁性能; 与形状各向同性的屏蔽填料相比, 以片形Fe @Ag核壳复合粒子为填料的电磁屏蔽复合材料的复磁导率更高, 体积电阻率更低, 该复合材料在电磁波频率范围为30-1500 MHz内的屏蔽效能(SE)为-51-- -55 dB, 优于以球形Fe @Ag核壳复合粒子为填料的电磁屏蔽复合材料. 并且从理论上分析了片形Fe @Ag核壳复合粒子的电磁屏蔽复合材料对电磁波的吸收损耗更强和屏蔽效能更高的物理本质.
关键词 形状各向异性 核壳复合粒子 电磁屏蔽 电磁特性    
Abstract:Due to the rapid growth of radio frequency radiation sources, electromagnetic shielding composite materials have become a research hotspot in civil control of electromagnetic radiation technology and military equipment shielding technology. The shielding effectiveness (SE) of these electromagnetic shielding composite materials has much to do with the structures, volume resistivity and magnetic properties of the fillers. Spherical and flaky Fe@Ag core–shell composite particles were synthesized by a liquid electroless plating method in this work. The phase, morphology and chemical composition of spherical and flaky particles were characterized. The magnetic property of fillers was analyzed. The effects of the shape of these shielding fillers on complex permeability, conductivity, magnetic properties and shielding effectiveness of their composition material were investigated. The results showed that spherical and flaky carbonyl iron powders/silver core–shell composite particles both had intact core–shell microstructure. Silver coating of these spherical and flaky composite particles were compact and even. Spherical and flaky Fe@Ag core–shell composite particles both had excellent soft magnetic properties, which shape of composite particles didn’t influence their magnetic properties. Compared with the electromagnetic shielding composite material based on isotropous shielding fillers, spherical Fe@Ag composite particles, the electromagnetic shielding composite material containing flaky core–shell composite particles showed higher complex permeability, lower volume resistivity and higher shielding effectiveness. In the frequency of electromagnetic wave ranging from 30 MHz to 1500 MHz, the shielding effectiveness of the electromagnetic shielding rubber containing flaky particles is –51— –55 dB. And the physical essence of better shielding effectiveness and stronger absorbing loss of composite materials containing flaky fillers was theoretically analyzed.
Key wordsshape anisotropy    core–shell composite particle    electromagnetic shielding    electromagnetic property
收稿日期: 2012-03-09     
基金资助:

中央高校基本科研业务费专项资金项目121214007, 武器装备预研基金项目9140A31030110JB3403和广东省产学研项目2010B090400091资助

作者简介: 赵素玲, 女, 1972年生, 副教授
[1] Wang Y L, Zhang Q X, Shao H M, Guan J G. Chin J Struct Chem, 2010; 29: 555

[2] Tong G X, Guan J G, Fan X A, Wang W, Li W. Acta Metall Sin, 2008; 44: 867

(童国秀, 官建国, 樊希安, 王维, 李维. 金属学报, 2008; 44: 867)

[3] Tong G X, Guan J G, Zhang W Y, Zhang W, Wang W, Dong D M. Acta Metall Sin, 2008; 44: 1001

(童国秀, 官建国, 张五一, 张巍, 王 维, 董德明. 金属学报, 2008; 44: 1001)

[4] Han E G, Kim E A, Oh K W. Synth Met, 2001; 123: 469

[5] Yuen S M, Ma C C M, Chuang C Y, Yu K C, Wu S Y, Yang C C, Wei M H. Compos Sci Technol, 2008; 68: 963

[6] Deng H, Skipa T, Bilotti E, Zhang R, Lellinger D, Mezzol L, Fu Q, Alig I, Peijs T. Adv Funct Mater, 2010; 20: 1424

[7] Wang Y L, Li W, Zhang Q X, Wang W, Guan J G. Chem J Chin Univ, 2010; 31: 1934

(王一龙, 李维, 章桥新, 王维, 官建国. 高等学校化学学报, 2010; 31: 1934)

[8] Cao X G, Zhang H Y. J Mater Eng, 2007; 8: 69

(曹晓国, 张海燕. 材料工程, 2007; 8: 69)

[9] Wu L B, Gao Y L, Li Y H. Design on Electromagnetic Compatibility of Modern Electronic System. Bejing: Defence Industry Press, 2004: 27

(吴良斌, 高玉良, 李延辉. 现代电子系统的电磁兼容设计. 北京: 国防工业出版社, 2004: 27)

[10] Jiang H J, Moon K S, Li Y, Wong C P. Chem Mater, 2006; 18: 2969

[11] Zhang Q X, Yang L N, Zhang J M, Guan J G, Wang Y L. J Chin Ceram Soc, 2007; 35: 987

(章桥新, 杨丽宁, 张佳明, 官建国, 王一龙. 硅酸盐学报, 2007; 35: 987)

[12] Ye L L, Lai Z H, Liu J, Tholen A. IEEE Trans Electron Pack, 1999; 22: 299

[13] Chiang H W, Chung C L, Chen L C. J Adhes Sci Technol, 2005; 19: 565

[14] Walser R M, Win W. IEEE Trans Magn, 1998; 34: 1390

[15] Walser R M, Kang W. IEEE Trans Magn, 1998; 34: 1144

[16] Ge F D, Zhu J, Chen L M. Chin J Electron, 1996; 24(6): 82

(葛副鼎, 朱静, 陈利民. 电子学报, 1996; 24(6): 82)

[17] Ge F D, Zhu J, Chen L M. Aero Mater Technol, 1996; (5): 42

(葛副鼎, 朱静, 陈利民. 宇航材料工艺, 1996; (5): 42)

[18] Zhou J, Wang W, Sun Z G, Guan J G. Acta Metall Sin, 2010; 46: 967

(周静, 王维, 孙志刚, 官建国. 金属学报, 2010; 46: 967)

[19] Zhao S L, Chen J, Wang Y L, Sun Z G, Guan J G. J Inorg Mater, 2010; 25: 1180

(赵素玲, 陈晶, 王一龙, 孙志刚, 官建国. 无机材料学报, 2010; 25: 1180)

[20] Li ZW, Chen L, Ong C K, Yang Z. J Mater Sci, 2005; 40: 719

[21] Tong G X, Wang W, Guan J G, Zhang Q J. J Inorg Mater, 2006; 21: 1461

(童国秀, 王维, 官建国, 张清杰. 无机材料学报, 2006; 21: 1461)

[22] Cho H S, Kim A S, Kim S M, Namgung J, Kim M C, Lee G A. Phys Status Solidi, 2004; 201A: 1942

[23] Dong D M, Guan J G,Wang W, Li W, Zhou J. Acta Metall Sin, 2009; 45: 1141

(董德明, 官建国, 王维, 李 维, 周静. 金属学报, 2009; 45: 1141)

[24] Xie J L, Liang B L, Deng L J. Funct Mater, 2008; 39: 41

(谢建良, 梁波浪, 邓龙江. 功能材料, 2008; 39: 41)

[25] Ruschau G R, Yashikaw A S, Newnham R E. J Appl Phys, 1992; 72: 953
No related articles found!