Please wait a minute...
金属学报  2012, Vol. 48 Issue (6): 654-660    DOI: 10.3724/SP.J.1037.2012.00061
  论文 本期目录 | 过刊浏览 |
热处理工艺对一种新型铸造镍基高温合金的组织和性能影响
杨金侠1,李金国1,王猛1,王延辉2,金涛1,孙晓峰1
1. 中国科学院金属研究所, 沈阳 110016
2. 中航工业黎明公司, 沈阳 110043
EFFECTS OF HEAT TREATMENT PROCESS ON THE MICROSTRUCTURE AND PROPERTIES OF A NEW CAST NICKEL-BASED SUPERALLOY
YANG Jinxia1, LI Jinguo1, WANG Meng1, WANG Yanhui2,JIN Tao1, SUN Xiaofeng1
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang  110016
2. Liming Aeroengine Company, Shenyang  110043
引用本文:

杨金侠,李金国,王猛,王延辉,金涛,孙晓峰. 热处理工艺对一种新型铸造镍基高温合金的组织和性能影响[J]. 金属学报, 2012, 48(6): 654-660.
, , , , , . EFFECTS OF HEAT TREATMENT PROCESS ON THE MICROSTRUCTURE AND PROPERTIES OF A NEW CAST NICKEL-BASED SUPERALLOY[J]. Acta Metall Sin, 2012, 48(6): 654-660.

全文: PDF(3232 KB)  
摘要: 通过改变固溶热处理温度、保温时间和固溶后冷却方式, 研究了不同固溶热处理工艺对一种新型铸造高温合金组织和性能的影响. 结果表明, 将合金在不同温度固溶处理2 h后空冷, 合金在760 ℃, 660 MPa和 980 ℃, 180 MPa条件下的持久寿命随热处理温度的升高先升高而后降低; 固溶处理温度为 1220 ℃时, 760 ℃, 660 MPa条件下的持久寿命达到最高; 固溶处理温度为1180 ℃时, 980 ℃, 180 MPa条件下的持久寿命最高; 当热处理温度从1120 ℃升高到1220 ℃时, 拉伸强度随温度升高而增加, 继续升温到1240 ℃, 拉伸强度下降. 当固溶热处理温度为1120℃, 处理时间在2---8 h范围内变化时, 合金在760 ℃, 660 MPa条件下的持久寿命随时间延长而降低, 而在980 ℃, 180 MPa条件下的持久寿命随处理时间延长而升高; 当热处理时间为2和4 h时, 拉伸强度较高; 延长到6和8 h时, 拉伸强度下降. 当冷却方式不同时, 合金持久性能也发生变化. γ'相和γ/γ'共晶组织在尺寸、形态、分布和数量上的变化是导致合金力学性能变化的关键因素.
关键词 热处理力学性能持久寿命拉伸强度    
Abstract:A new casting Ni-based superalloy is used in industrial and aircraft turbine because of its high strength and excellent hot corrosion resistance at high temperatures (about 900 ℃). The effect of heat treatment process on its microstructure and mechanical properties of the experimental casting Ni--based superalloy was studied in the present investigation in order to improve its application level. The results showed that the stress--rupture lives were changed with the increase of heat treatment temperatures. After solution treated for 2 h, then cooling by air cooling, the stress-rupture life under the conditions of 760 ℃ and 660 MPa was the highest in the case of heat treatment temperature at 1220 ℃, while under the testing conditions of 980 ℃ and 180 MPa the stress--rupture life was the highest in the case of heat treatment temperature at 1180 ℃. The stress--rupture life decreased when being heat-treated at temperatures above 1220 or 1180 ℃. The tensile strength of the alloy was improved with the increase of heat treatment temperatures from 1120 to 1220 ℃, and was decreased in the case of heat treatment temperature at 1240 ℃. The experimental results also showed that with the increment of holding time from 2 to 8 h at 1120 ℃ the stress--rupture life increased under the conditions of 760 ℃ and 660 MPa, while it was decreased under the conditions of 980 ℃ and 180 MPa. It was found that the tensile strength was higher for the alloy being held for 2 and 4 h than that for the alloy being held for 6 and 8 h, and the stress--rupture lives changed with the different cooling ways. The mechanical properties of the alloy may be determined by the size, shape, distribution and volume fractions of γ' phase and γ/γ' eutectic.
Key wordsheat treatment    mechanical property    stress-rupture life    tensile strength
收稿日期: 2012-02-13     
基金资助:

国家重点基础研究发展计划项目2010CB631200和2010CB631206及国家自然科学基金项目50931004和50971124资助
杨金侠, 女, 1970年生, 副研究员, 博士
10.3724/SP.J.1037.2012.00061

作者简介: 杨金侠, 女, 1970年生, 副研究员, 博士
[1] Yin F S.  PhD Thesis, Institute of Metal Research,Chinese Academy of Sciences, Shenyang, 2003

    (殷凤仕. 中国科学院金属研究所博士学位论文, 沈阳, 2003)

[2] Yang J X.  PhD Thesis, Institute of Metal Research,Chinese Academy of Sciences, Shenyang, 2006

    (杨金侠. 中国科学院金属研究所博士学位论文, 沈阳, 2006)

[3] Jackson M P, Reed R C.  Mater Sci Eng, 1999; A259: 85

[4] Caron P, Khan T.  Mater Sci Eng, 1983; 61: 173

[5] Footner P K, Richards B P.  J Mater Sci, 1982; 17: 2141

[6] Baladan A.  J Mater Sci, 2002; 37: 2379

[7] Balikci E, Raman A, Mirshams R A.  Metall Mater Trans,1997; 28A: 1993

[8] Monajati H, Jahazi M, Bahrami R, Yue S.  Mater Sci Eng,2004; A373: 286

[9] Jena J A.  Mater Sci Eng, 1984; 19: 3121

[10] Ges A, Fornaro O, Palacio H.  J Mater Sci, 1997; 32: 3687

[11] Yang J X, Zheng Q, Sun X F, Guan H R, Hu Z Q.  Mater Sci Eng,2006; A429: 341

[12] Yang J X, Zheng Q, Sun X F, Guan H R, Hu Z Q.  J Mater Sci,2006; 41: 6476

[13] Yang J X, Zheng Q, Zhang H Y, Sun X F, Guan H R, Hu Z Q. Mater Sci Eng, 2010; A527: 1016

[14] Yang J X, Zheng Q, Ji M Q, Sun X F, Guan H R, Hu Z Q. Mater Sci Eng, 2011; A528: 1534

[15] Yang J X, Zheng Q, Sun X F, Guan H R, Hu Z Q.  Mater Sic Eng,2007; A465: 100

[16] Jia Y X.  PhD Thesis, Institute of Metal Research,Chinese Academy of Sciences, Shenyang, 2009

     (贾玉贤. 中国科学院金属研究所博士学位论文, 沈阳, 2009)

[17] Liu L R.  PhD Thesis, Institute of Metal Research,Chinese Academy of Sciences, Shenyang, 2004

     (刘丽荣. 中国科学院金属研究所博士学位论文, 沈阳, 2004)
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[10] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[11] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[14] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[15] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.