Please wait a minute...
金属学报  2011, Vol. 47 Issue (12): 1535-1540    DOI: 10.3724/SP.J.1037.2011.00369
  论文 本期目录 | 过刊浏览 |
镁基表面微弧氧化/类金刚石膜的性能表征
杨巍1,汪爱英1,柯培玲1,蒋百灵2
1.中国科学院宁波材料技术与工程研究所, 宁波 315201
2.西安理工大学材料科学与工程学院, 西安 710048
CHARACTERIZATIONS OF DLC/MAO COMPOSITE COATINGS ON AZ80 MAGNESIUM ALLOY
YANG Wei1, WANG Aiying1, KE Peiling1,JIANG Bailing2
1.Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201
2.School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048
引用本文:

杨巍 汪爱英 柯培玲 蒋百灵. 镁基表面微弧氧化/类金刚石膜的性能表征[J]. 金属学报, 2011, 47(12): 1535-1540.

全文: PDF(768 KB)  
摘要: 利用MgO多孔膜结构取代传统制备DLC膜所需的金属过渡层(如Ti), 采用离子束复合磁控溅射技术制备出了DLC/MAO/AZ80膜基系统,并通过与MAO/AZ80, DLC/Ti/MAO/AZ80及DLC/Ti/AZ80对比, 系统研究了此类膜基系统的表面微观形貌、粗糙度、纳米压痕行为、摩擦学特性及电化学性能. 结果表明: MgO多孔膜表面沉积DLC膜使其粗糙度减小, 硬度增加, 而弹性模量与MgO多孔膜相差较小;借助表层微孔特征及DLC膜的润滑特性, 使得DLC/MAO/AZ80膜基系统的平均摩擦系数、磨痕宽度与传统的DLC/Ti/AZ80膜基系统相当,并进一步制备出了具有最小平均摩擦系数和磨痕宽度的DLC/Ti/MAO/AZ80膜基系统;由于MgO多孔膜结构的极化阻力使得MAO/AZ80, DLC/MAO/AZ80和DLC/Ti/MAO/AZ80膜基系统的耐蚀性均明显优于DLC/Ti/AZ80.
关键词 类金刚石膜 MgO 多孔结构 性能    
Abstract:Diamond–like carbon (DLC) coating has been widely used to modify the surface mechanical and tribological properties of materials. In most cases, a metallic buffer (e.g., Ti) is used as an interlayer between DLC coating and the substrate to improve the adhesion. In this work, the DLC coating was deposited on the AZ80 Mg alloy substrate using ion beam deposition technique. Specially, a pretreatment of microarc oxidation (MAO) was applied to the Mg alloy substrates to form the DLC/MAO composite coating instead of the metallic interlayer process. As a comparation, the DLC/Ti/MAO and DLC/Ti composite coatings were also deposited on the substrates. The surface morphology and roughness, mechanical, tribological and corrosion properties of the as–deposited coatings were studied. The results indicated that the DLC/MAO composite coating could significantly improved the hardness and wear resistance of the Mg alloy substrates compared with the MAO monolayer. Although the surface roughness of the DLC/MAO coating showed an increase due to the micropores of the MAO coating surface, the friction coefficient and the wear tracks exhibited a similar behavior to that of the DLC/Ti coating. Furthermore, the DLC/Ti/MAO/AZ80 system showed the best tribological properties among the current experimental samples. Meanwhile, the polarization curve revealed that the corrosion resistance of the MAO/AZ80, DLC/MAO/AZ80 and DLC/Ti/MAO/AZ80 film–substrate systems was greatly improved due to the existence of the MgO structure, which processed the high polarization resistance.
Key wordscompact strip production (CSP)    Ti microalloyed steel    strengthening mechanism    mechanical property
收稿日期: 2011-06-15     
ZTFLH: 

TG146.2

 
基金资助:

国家自然科学基金项目51072205和宁波市自然科学基金项目201101A6105005资助

作者简介: 杨巍, 男, 1981年生, 博士
[1] Guo J, Wang L P, Liang J, Xue Q J, Yan F Y. J Alloys Compd, 2009; 481: 903

[2] Wang XM,WuWD, Li S Y, Chen S L, Tang Y J, Bai L, Wang H P. Rare Met Mater Eng, 2010; 39: 1251

(王雪敏, 吴卫东, 李盛印, 陈松林, 唐永建, 白黎, 王海平. 稀有金属材料与工程, 2010; 39: 1251)

[3] Li H K, Lin G Q, Dong C. Chin J Inorg Chem, 2010; 25:517

(李红凯, 林国强, 董闯. 无机材料学报, 2010; 25: 517)

[4] Robertson J. Surf Coat Technol, 1992; 50: 185

[5] Cruz R, Rao J, Rose T, Lawson K, Nicholls J R. Diamond Relat Mater, 2006; 15: 2055

[6] Yoshihiko U, Toshifumi K, Takema T, Yoshio H, Keiro T. Surf Coat Technol, 2011; 205: 2778

[7] Davis C A. Thin Solid Film, 1993; 226: 30

[8] Funada Y, Awazu K, Yasui H, Sugita T. Surf Coat Technol, 2000; 129: 308

[9] McKenzie D R, Muller D, Pailthorpe B A. Phys Rev Lett, 1991; 67: 773

[10] Sheeja D, Tay B K, Nung L N. Surf Coat Technol, 2005; 190: 231

[11] Wu G S, Sun L L, Dai W, Song L X, Wang A Y. Surf Coat Technol, 2010; 204: 2193

[12] Yamauchi N, Ueda N, Cuong N K, Sone T, Hirose Y. Surf Coat Technol, 2005; 193: 277

[13] Choi J, Nakao S, Kim J, Ikeyama M, Kato T. Diamond Relat Mater, 2007; 16: 1361

[14] Yamauchi N, Ueda N, Okamoto A, Sone T, Tsujikawa M, Oki S. Surf Coat Technol, 2007; 201: 4913

[15] Wu G S, Dai W, Zheng H, Wang A Y. Surf Coat Technol, 2010; 205: 2067

[16] Yoon S F, Yang H, Ahn R J, Zhang Q. Vacuum, 1998; 49: 67

[17] Xue W B, Jin Q, Zhu Q Z, Hua M, Ma Y Y. J Alloys Compd, 2009; 482: 208

[18] Wang Y M, Guo L X, Ouyang J H, Zhou Y, Jia D C. Appl Surf Sci, 2009; 255: 6875

[19] Liang J, Hu L T, Hao J F. Appl Surf Sci, 2007; 253: 6939

[20] Dorner–Reisel A, Schurer C, Irmer G, Muller E. Surf Coat Technol, 2004; 177–178: 830

[21] Barchiche C E, Rocca E, Hazan J. Surf Coat Technol, 2008; 202: 4145

[22] Statuti R P C C, Radi P A, Santos L V, Trava–Airoldi V J. Wear, 2009; 267: 1208

[23] Topolovec–Miklozic K, Lockwood F, Spikes H. Wear, 2008; 265: 1893

[24] Yan X B, Xu T, Chen G, Yang S G, Liu H W. Appl Surf Sci, 2004; 236: 328

[25] Suzuki M, Ohana T, Tanaka A. Diamond Relat Mater, 2004; 13: 2216

[26] Ikeyama M, Nakao S, Sonoda T, Choi J. Nuclear Instrum Methods Phys Res, 2009; 267B: 1675
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 刘伟, 陈婉琦, 马梦晗, 李恺伦. 聚变堆用W在等离子体作用下的辐照损伤行为研究进展[J]. 金属学报, 2023, 59(8): 986-1000.
[9] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[10] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[11] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[12] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[13] 郭福, 杜逸晖, 籍晓亮, 王乙舒. 微电子互连用锡基合金及复合钎料热-机械可靠性研究进展[J]. 金属学报, 2023, 59(6): 744-756.
[14] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[15] 刘俊鹏, 陈浩, 张弛, 杨志刚, 张勇, 戴兰宏. 高熵合金的低温塑性变形机制及强韧化研究进展[J]. 金属学报, 2023, 59(6): 727-743.