Please wait a minute...
金属学报  2011, Vol. 47 Issue (3): 367-373    DOI: 10.3724/SP.J.1037.2010.00511
  论文 本期目录 | 过刊浏览 |
G3镍基耐蚀合金管材热挤压工艺润滑行为研究 I. 玻璃润滑膜厚度模型建立及应用
王宝顺,林奔,张麦仓,董建新
北京科技大学材料科学与工程学院, 北京 100083
RESEACH ON LUBRICATION IN HOT EXTRUSION OF G3 CORROSION RESISTANT Ni–BASED ALLOY TUBE I. Establishment and Application of Glass Lubricating Film Thickness Model
WANG Baoshun, LIN Ben, ZHANG Maicang, DONG Jianxin
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
引用本文:

王宝顺 林奔 张麦仓 董建新. G3镍基耐蚀合金管材热挤压工艺润滑行为研究 I. 玻璃润滑膜厚度模型建立及应用[J]. 金属学报, 2011, 47(3): 367-373.
, , , . RESEACH ON LUBRICATION IN HOT EXTRUSION OF G3 CORROSION RESISTANT Ni–BASED ALLOY TUBE I. Establishment and Application of Glass Lubricating Film Thickness Model[J]. Acta Metall Sin, 2011, 47(3): 367-373.

全文: PDF(1127 KB)  
摘要: 研究了G3镍基耐蚀合金管材玻璃润滑热挤压工艺中润滑膜的成膜行为, 建立了润滑膜厚度的理论计算模型. 同时, 针对6000 t卧式挤压机, 结合G3合金热挤压工艺有限元模拟分析, 对热挤压工艺参数和玻璃润滑剂黏度进行了系统的研究. 结果表明, 可以通过玻璃润滑膜厚度及完成一次热挤压所需玻璃垫厚度的理论计算公式优化G3合金管材热挤压工艺参数, 并进一步获得了玻璃润滑剂黏度性质须满足: 玻璃粉的软化温度大约为720 ℃;在720-800 ℃, 玻璃黏温系数在-0.05 ℃-1和-0.04 ℃-1之间;热变形温度1100-1200 ℃区间的黏度为25-200 Pa?s.
关键词 镍基合金 热挤压 玻璃润滑剂    
Abstract:In the hot extrusion of steel, adequate lubrication can be obtained by placing a glass pad made of compacted glass powder in front of the billet. During the extrusion, the glass pad progressively melts in thin layer, allowing lubrication to be maintained over the entire stroke. However, the thickness of glass pad in a single operation is markedly depends on the process parameters and glass properties. Therefore, the mechanism of glass lubrication film forming and film thickness calculation model has been investigated during hot extrusion of G3 nickel–based alloy tube. Furthermore, combined with FEM code, the operation variables and viscosity of glass lubricant have been systematically researched in the hot extrusion of G3 alloy tube which is conducted on the 6000 t horizontal extrusion press. The results showed that the processing parameters can be optimized using the thickness formulation of lubrication film and glass pad during a single press operation. Moreover, under the prctically technical parameters of hot extrusion G3 alloy tube, the requirements of glass viscosity are s follows: softening temperature about 720 ℃; the viscosity coefficient ranges −0.05 ℃−1 to −0.04 ℃−1 when temperature is between 720 and 800 ; the viscosity ranges 25 Pa·s to 200 Pa·s uring the hot working temperature 1100—1200 ℃.
Key wordsnickel–based alloy    hot extrusion    glass lubricant
收稿日期: 2010-09-28     
ZTFLH: 

TG376.2,TH117.2

 
基金资助:

国家自然科学基金重点资助项目50831008

作者简介: 王宝顺, 男, 1982生, 博士生
[1] Sejournet J. US Pat, 2538917, 1951

[2] Baque P, Pantin J, Jacob G. J Lubr Technol, 1975; 97: 18

[3] Hughes K E, Sellars C M. J Iron Steel Inst (UK), 1972; 210: 661

[4] Gupta A K, Hughes K E, Sellars C M. Met Technol, 1980; 7: 323

[5] Hansson S, Jansson T. J Mater Process Technol, 2010; 210: 1386

[6] Hansson S. PhD Thesis, Lule°a University of Technology, 2010

[7] Wu R D, Wang X F, Zhang L. J Plast Eng, 2009; 16(8): 95

(吴任东, 王雪凤, 张磊. 塑性工程学报, 2009; 16(8): 95)

[8] Damodaran D, Shivpuri R. CIRP Ann Manuf Technol, 1997; 46: 179

[9] Damodaran D, Shivpuri R. J Mater Process Technol, 2004; 150: 70

[10] Guo J T. Acta Metall Sin, 2010; 46: 513

(郭建亭. 金属学报, 2010; 46: 513)

[11] Zhang S H, Xu Y, Shang Y L, Yang K,Wang G T. J Mater Sci Technol, 200; 17: 113

[12] Xu Z, Duan S J, Tong X W, Yang L L, Li N. Rare Met Lett, 2008; 27(11): 37

(徐哲, 段素杰, 佟学文, 杨陇林, 李农. 稀有金属快报,

[13] Zhang S H, Wang G T, Qiao B, Xu Y, Xu T F. J Mater Sci Technol, 2005; 21: 175

[14] Yang P R. Numerical Analysis of Fluid Lubrication. Beijing: National Defense Industry Press, 1998: 9

(杨沛然. 流体润滑数值分析. 北京: 国防工业出版社, 1998: 9)

[15] Rogers J A, Rowe G W. J Inst Met, 1967; 95: 257

[16] Kulkarni K M, Schey J A, Wallace P W, Depierre V. J Inst Met, 1972; 100: 33

[17] Li L X, Peng D S, Liu J A, Liu Z Q, Jiang Y. J Mater Process Technol, 2000; 102: 138
[1] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[2] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.
[3] 陈润, 王帅, 安琦, 张芮, 刘文齐, 黄陆军, 耿林. 热挤压与热处理对网状TiBw/TC18复合材料组织及性能的影响[J]. 金属学报, 2022, 58(11): 1478-1488.
[4] 王迪, 王栋, 谢光, 王莉, 董加胜, 陈立佳. Pt-Al涂层对一种镍基单晶高温合金抗热腐蚀行为的影响[J]. 金属学报, 2021, 57(6): 780-790.
[5] 陈建军, 丁雨田, 王琨, 闫康, 马元俊, 王兴茂, 周胜名. Laves相对 GH3625合金管材热挤压过程中爆裂行为的影响[J]. 金属学报, 2021, 57(5): 641-650.
[6] 余磊, 曹睿. 镍基合金焊接裂纹研究现状[J]. 金属学报, 2021, 57(1): 16-28.
[7] 刘先锋, 刘冬, 刘仁慈, 崔玉友, 杨锐. Ti-43.5Al-4Nb-1Mo-0.1B合金的包套热挤压组织与拉伸性能[J]. 金属学报, 2020, 56(7): 979-987.
[8] 华涵钰,谢君,舒德龙,侯桂臣,盛乃成,于金江,崔传勇,孙晓峰,周亦胄. W含量对一种高W镍基高温合金显微组织的影响[J]. 金属学报, 2020, 56(2): 161-170.
[9] 李克俭, 张宇, 蔡志鹏. 异种金属焊接接头在热-力耦合作用下的断裂位置转移机理[J]. 金属学报, 2020, 56(11): 1463-1473.
[10] 王资兴,黄烁,张北江,王磊,赵光普. 高合金化GH4065镍基变形高温合金点状偏析研究[J]. 金属学报, 2019, 55(3): 417-426.
[11] 韦康, 张麦仓, 谢锡善. 超超临界电站用镍基合金热加工过程的再结晶机理[J]. 金属学报, 2017, 53(12): 1611-1619.
[12] 欧美琼,刘扬,查向东,马颖澈,程乐明,刘奎. 一种新型镍基合金在超临界多种离子共存环境下的腐蚀行为*[J]. 金属学报, 2016, 52(12): 1557-1564.
[13] 谢君,于金江,孙晓峰,金涛,杨彦红. 温度对高W含量K416B镍基合金拉伸行为的影响*[J]. 金属学报, 2015, 51(8): 943-950.
[14] 谢君, 于金江, 孙晓峰, 金涛, 孙元. 高钨K416B铸造镍基合金高温蠕变期间碳化物演化行为[J]. 金属学报, 2015, 51(4): 458-464.
[15] 谢君,田素贵,刘姣,周晓明,苏勇. FGH95粉末镍基合金蠕变期间位错网的形成与分析[J]. 金属学报, 2013, 49(7): 838-844.