Please wait a minute...
金属学报  2019, Vol. 55 Issue (4): 480-488    DOI: 10.11900/0412.1961.2018.00241
  本期目录 | 过刊浏览 |
冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响
任德春1,2,苏虎虎1,2,张慧博1,王健1,金伟1,2(),杨锐1,2
1. 中国科学院金属研究所 沈阳 110016
2. 中国科学技术大学材料科学与工程学院 沈阳 110016
Effect of Cold Rotary-Swaging Deformation on Microstructure and Tensile Properties of TB9 Titanium Alloy
Dechun REN1,2,Huhu SU1,2,Huibo ZHANG1,Jian WANG1,Wei JIN1,2(),Rui YANG1,2
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.
Dechun REN, Huhu SU, Huibo ZHANG, Jian WANG, Wei JIN, Rui YANG. Effect of Cold Rotary-Swaging Deformation on Microstructure and Tensile Properties of TB9 Titanium Alloy[J]. Acta Metall Sin, 2019, 55(4): 480-488.

全文: PDF(19419 KB)   HTML
摘要: 

采用冷旋锻对TB9钛合金棒材进行多道次冷变形,利用OM、EBSD、XRD、TEM以及拉伸等实验研究了不同冷变形量TB9钛合金棒材的显微组织、织构和拉伸性能及其规律。结果表明,TB9钛合金棒材的晶粒尺寸随冷旋锻变形量的增大而减小,部分晶粒尺寸达到纳米级。同时,晶粒随变形量的增加沿旋锻轴向转动,形成择优取向,由初始{001}<110>和{001}<100>织构转变为<110>取向的α-fiber和γ-fiber {001}<110>、{112}<110>和{111}<110>织构。在亚结构、小尺寸晶粒以及织构的共同作用下,TB9钛合金的强度随变形量的增大而增加,延伸率和面缩率在70%冷变形后仍保持在一个较高的水平,具有优异的冷变形能力。

关键词 TB9钛合金冷旋锻变形显微组织织构拉伸性能    
Abstract

TB9 titanium alloy has been widely used for aerospace due to it's superior low stiffness, corrosion resistance and workability. It has been reported that cold deformation can improve the comprehensive mechanical properties of titanium alloys. At the same time, the cold rotary-swaging deformation facilitates the production of small batches and the acquisition of special shape and size bars. However, current studies on the microstructure and properties of cold rotary-swaged titanium alloys are not systematic. So, the effects of cold deformation rate on the microstructure, texture evolution and mechanical property of TB9 alloy during cold rotary-swaging were investigated using OM, EBSD, XRD, TEM and tensile test. The results showed that the grain size of TB9 titanium was refined with the increase in diameter reduction. Meanwhile, with the deformation increases, the grains rotation along the swaging axis occurs, forming a preferred orientation, the textures change from initial {001}<110> and {001}<100> to α-fiber and γ-fiber {001}<110>, {112}<110> and {111}<110>. All of grains refinement, texture components and substructures contributed to the enhancement of strength after cold rotary-swaging. And the ductile kept on a high level after 70% cold working, which means the TB9 titanium has a great cold deformation ability.

Key wordsTB9 titanium alloy    cold rotary-swaging deformation    microstructure    texture    tensile property
收稿日期: 2018-03-15     
ZTFLH:  TG146.2  
作者简介: 任德春,男,1991年生,博士生
图1  TB9钛合金固溶态样品的OM像、TEM像和SAED花样及EBSD分析
图2  TB9钛合金冷旋锻变形前后大角度晶界和小角度晶界所占比例
图3  TB9钛合金冷旋锻变形后显微组织OM像和EBSD分析
图4  冷旋锻变形前后TB9钛合金的XRD谱
图5  冷旋锻变形后TB9钛合金显微组织的TEM像和70%冷旋锻变形量时的SAED花样
图6  冷旋锻变形量70%时的EBSD衬度对比及取向分布
图7  冷旋锻变形态TB9钛合金的极图
图8  固溶态及冷旋锻变形态TB9钛合金的取向分布函数(ODF)图 (φ2=45o)
图9  TB9钛合金室温应力-应变曲线

Rotary-swaging rate

%

Rp0.2

MPa

Rm

MPa

A

%

Z

%

0890.5896.028.863.0
10962.0963.510.457.0
151045.01049.514.357.0
201087.01089.511.456.0
251128.51130.08.148.0
301146.01152.07.747.5
351206.01210.59.450.5
401191.51192.09.250.0
701350.01350.57.943.5
表1  不同冷旋锻变形量下TB9钛合金室温拉伸性能
图10  旋锻变形态TB9钛合金晶粒尺寸分布
1 Huang X, Cuddy J, Goel N, et al. Effect of heat treatment on the microstructure of a metastable β-titanium alloy [J]. J. Mater. Eng. Perform., 1994, 3: 560
2 Tian Y X, Li S J, Hao Y L, et al. High temperature deformation behavior and microstructure evolution mechanism transformation in Ti2448 alloy [J]. Acta Metall. Sin., 2012, 48: 837
2 田宇兴, 李述军, 郝玉琳等. Ti2448合金高温变形行为及组织演变机制的转变 [J]. 金属学报, 2012, 48: 837
3 Boyer R R, Brigge R D. The use of β titanium alloys in the aerospace industry [J]. J. Mater. Eng. Perform., 2005, 14: 681
4 Huang L J, Wang J, Zhang H B, et al. Effects of cold drawing deformation and aging temperature on microstructure and mechanical properties of TB9 titanium alloy [J]. Chin. J. Nonferrous Met., 2013, 23(Special 1): s11
4 黄鎏杰, 王 健, 张慧博等. 冷拉拔变形量和时效温度对TB9钛合金丝材组织和性能的影响 [J]. 中国有色金属学报, 2013, 23(专辑1): s11)
5 Xu X, Dong L M, Ba H B, et al. Hot deformation behavior and microstructural evolution of beta C titanium alloy in β phase field [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 2874
6 Rack H J. Plastic deformation of unaged RMI 38644 [J]. Scr. Mater., 1976, 10: 739
7 Banumathy S, Mandal R K, Singh A K. Texture and anisotropy of hot rolled Ti-16Nb alloy [J]. J. Alloys Compd., 2010, 500: L26
8 Dai S J, Wang Y, Chen F, et al. Effect of cold deformation on microstructure and mechanical properties of Ti-35Nb-9Zr-6Mo-4Sn alloy for biomedical applications [J]. Mater. Sci. Eng., 2013, A575: 35
9 Zhang Z Q, Dong L M, Guan S X, et al. Microstructure and mechanical properties of TC16 titanium alloy by room temperature roller die drawing [J]. Acta Metall. Sin., 2017, 53: 415
9 张志强, 董利民, 关少轩等. TC16钛合金辊模拉丝过程中的显微组织和力学性能 [J].金属学报, 2017, 53: 415
10 Fang S M, Lei T, Zhang Y L, et al. Application study on swaging special-shaped non-ferrous metal wire of lower plasticity [J]. Forg. Stamp. Technol., 2007, 32(5): 69
10 方树铭, 雷 霆, 张玉林等. 旋锻法加工低塑性有色金属异型材的应用研究 [J]. 锻压技术, 2007, 32(5): 69)
11 Zheng B Z, Tang X X, Tian X L, et al. Treatment methods on relative motion between clamp and hammer in numerical simulation of rotary forging for titanium alloy wire [J]. Forg. Stamp. Technol., 2017, 42(10): 195
11 郑帮智, 唐新新, 田晓琳等. 钛合金线材旋锻数值仿真中夹具与锤头相对运动的处理方法 [J]. 锻压技术, 2017, 42(10): 195)
12 Guo W Y, Xing H, Sun J. EBSD and TEM studies of deformation structure of metastable β-type titanium alloy after cold-swaging [J]. J. Chin. Electron Micros. Soc., 2008, 27: 469
12 郭文渊, 邢 辉, 孙 坚. 亚稳态β钛合金冷旋锻形变组织的EBSD和TEM研究 [J]. 电子显微学报, 2008, 27: 469
13 Pachla W, Kulczyk M, Przybysz S, et al. Effect of severe plastic deformation realized by hydrostatic extrusion and rotary swaging on the properties of CP Ti grade 2 [J]. J. Mater. Process.Technol., 2015, 221: 255
14 Alkhazraji H, El-Danaf E, Wollmann M, et al. Enhanced fatigue strength of commercially pure Ti processed by rotary swaging [J]. Adv. Mater. Sci. Eng., 2015, 2015: 301837
15 Wang H F, Han J T, Hao Q L. Influence of mandrel on the performance of titanium tube with cold rotary swaging [J]. Mater. Manuf. Processes, 2015, 30: 1251
16 Ide N, Morita T, Takahashi K, et al. Influence of cold rolling on fundamental properties of Ti-15V-3Cr-3Sn-3Al alloy [J]. Mater. Trans., 2015, 56: 1800
17 Sun J F, Zhang Z W, Zhang M L, et al. Microstructure evolution and their effects on the mechanical properties of TB8 titanium alloy [J]. J. Alloys Compd., 2016, 663: 769
18 Chung C C, Wang S W, Chen Y C, et al. Effect of cold rolling on structure and tensile properties of cast Ti-7.5Mo alloy [J]. Mater. Sci. Eng., 2015, A631: 52
19 Cai S, Bailey D M, Kay L E. Effect of annealing and cold work on mechanical properties of beta III titanium [J]. J. Mater. Eng. Perform., 2012, 21: 2559
20 Xu T W, Li J S, Zhang S S, et al. Cold deformation behavior of the Ti-15Mo-3Al-2.7Nb-0.2Si alloy and its effect on α precipitation and tensile properties in aging treatment [J]. J. Alloys Compd., 2016, 682: 404
21 Wu X, Tao N, Hong Y, et al. Microstructure and evolution of mechanically-induced ultrafine grain in surface layer of Al-alloy subjected to USSP [J]. Acta Mater., 2002, 50: 2075
22 Zhao H L, Ni S, Song M, et al. Grain refinement via formation and subdivision of microbands and thin laths structures in cold-rolled hafnium [J]. Mater. Sci. Eng., 2015, A645: 328
23 Engler O, Tomé C N, Huh M Y. A study of through-thickness texture gradients in rolled sheets [J]. Metall. Mater. Trans., 2000, 31A: 2299
24 Miyamoto H, Xiao T, Uenoya T, et al. Effect of simple shear deformation prior to cold rolling on texture and ridging of 16% Cr ferritic stainless steel sheets [J]. ISIJ Int., 2010, 50: 1653
25 Ray R K, Jonas J J, Hook R E. Cold rolling and annealing textures in low carbon and extra low carbon steels [J]. Int. Mater. Rev.,1994, 39: 129
26 Conrad H. Effect of interstitial solutes on the strength and ductility of titanium [J]. Prog. Mater. Sci., 1981, 26: 123
27 Zhang Y W, Li S J, Obbard E G, et al. Elastic properties of Ti-24Nb-4Zr-8Sn single crystals with bcc crystal structure [J]. Acta Mater., 2011, 59: 3081
28 Fang T H, Li W L, Tao N R, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper [J]. Science, 2011, 331: 1587
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[4] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[5] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[6] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[7] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[8] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[9] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[10] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[11] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[12] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[13] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[14] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[15] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.