Please wait a minute...
金属学报  2018, Vol. 54 Issue (7): 1059-1067    DOI: 10.11900/0412.1961.2017.00475
  本期目录 | 过刊浏览 |
DC铸造Al-12Si-0.65Mg-xMn合金中第二相的形成
王光东1, 田妮1,2(), 何长树1,2, 赵刚1,2, 左良2,3
1 东北大学材料科学与工程学院 沈阳 110819
2 东北大学材料各向异性与织构教育部重点实验室 沈阳 110819
3 中国科学院金属研究所 沈阳 110016
Formation of Second-Phases in a Direct-Chill Casting Al-12Si-0.65Mg-xMn Alloy
Guangdong WANG1, Ni TIAN1,2(), Changshu HE1,2, Gang ZHAO1,2, Liang ZUO2,3
1 School of Materials Science & Engineering, Northeastern University, Shenyang 110819, China;
2 Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China
3 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

王光东, 田妮, 何长树, 赵刚, 左良. DC铸造Al-12Si-0.65Mg-xMn合金中第二相的形成[J]. 金属学报, 2018, 54(7): 1059-1067.
Guangdong WANG, Ni TIAN, Changshu HE, Gang ZHAO, Liang ZUO. Formation of Second-Phases in a Direct-Chill Casting Al-12Si-0.65Mg-xMn Alloy[J]. Acta Metall Sin, 2018, 54(7): 1059-1067.

全文: PDF(13152 KB)   HTML
摘要: 

采用LSCM、XRD、SEM、TEM及其附带的EDS,结合相图分析研究了半连续铸造(DC铸造)Al-12Si-0.65Mg-(0~2.27)Mn (质量分数,%)合金铸锭中的第二相及其形成过程。结果表明,Al-12Si-0.65Mg合金铸锭中存在α-Al、共晶Si、Mg2Si和π相(Al8Mg3FeSi6),它们分别是在567 ℃通过L+Al5FeSi→α-Al+Si+Al8Mg3FeSi6、555 ℃通过L→α-Al+Si+Mg2Si及550~554 ℃通过L→α-Al+Si+Mg2Si+Al8Mg3FeSi6反应形成的。当合金中添加Mn时,α-Al枝晶明显细化,同时合金铸锭中出现α-Al(FeMn)Si相;当Mn含量(质量分数,下同)从0.10%增加至2.27%时,α-Al枝晶形貌、尺寸及数量无明显变化,α-Al(FeMn)Si数量增多而尺寸不变;当Mn含量达到1.07%时,合金在647 ℃通过L+Al6Mn→α-Al+Al9Mn4Si3反应生成尺寸约80 μm的Al9Mn4Si3,其中溶解了少量Fe形成Al9(FeMn)4Si3,随Mn含量增加其数量增多而尺寸不变;经550 ℃均匀化处理后,合金中的Mg2Si相溶入基体消失,共晶Si、π相和α-Al(FeMn)Si相球化成颗粒状,Al9(FeMn)4Si3相形貌、尺寸及数量几乎不变,Al-12Si-0.65Mg-(0.10~2.27)Mn合金基体中析出尺寸约几百纳米的Al9(MnFe)2Si3弥散相粒子,其数量随Mn含量增加而增多。

关键词 含Mg共晶Al-Si合金Mn第二相DC铸造均匀化    
Abstract

Mg-containing high Si aluminum alloy that can be heat treatment enhanced is widely used in the fields of engine, vehicle industry and aerospace, because of its high specific strength, high wear resistance, corrosion resistance and low thermal expansion coefficient. At present, the alloying to improve the microstructure of Mg-containing high Si aluminum alloy and improve its mechanical properties is an important research hotspot of this kind of alloy. As an important alloying element in aluminum alloy, Manganese is of great significance to study the type and formation process of Mn-containing second phase in Mg-containing high Si aluminum alloy. The second phases and their formation in a direct-chill casting Al-12Si-0.65Mg-(0~2.27)Mn (mass fraction, %) alloy were investigated by LSCM, XRD, SEM/EDS and TEM/EDS, combined with phase graph analysis. The results show that there are eutectic silicon, Mg2Si and π-(Al8Mg3FeSi6) besides matrix α-Al in the Mn-free Al-12Si-0.65Mg (mass fraction, %) alloy ingot, which are formed by the reactions of L+Al5FeSi→α-Al+Si+Al8Mg3FeSi6, L→α-Al+Si+Mg2Si and L→α-Al+Si+Mg2Si+Al8Mg3FeSi6 at 567, 555 and 550~554 ℃, respectively. The α-Al dendrites are obviously refined, and α-Al(FeMn)Si phase can be observed with the addition of Mn to Al-12Si-0.65Mg-(0.10~2.27)Mn (mass fraction, %) alloy ingot. With the Mn content increasing from 0.10% to 2.27%, the morphology of α-Al dendrites has no obvious change, and the number of α-Al(FeMn)Si increases gradually whereas the size of α-Al(FeMn)Si doesn't change much. There are some Al9(FeMn)4Si3 with the size of about 80 μm in the Al-12Si-0.65Mg-(1.07~2.27)Mn (mass fraction, %) alloy ingot with the Mn content over 1.07%, which are formed by the reaction of L+Al6Mn→α-Al+Al9Mn4Si3 at 647 ℃, and Al9Mn4Si3 turns into Al9(FeMn)4Si3 with Fe dissolved into it. The number of Al9(FeMn)4Si3 increases with the Mn content increasing from 1.07% to 2.27%, whereas the size of Al9(FeMn)4Si3 has no obvious change. Mg2Si entirely dissolves into the matrix. Eutectic silicon, π-(Al8Mg3FeSi6) and α-Al(FeMn)Si spheroidize into granules, whereas the size, the morphology and the number of Al9(FeMn)4Si3 remain unchanged after the Al-12Si-0.65Mg-xMn (mass fraction, %) alloy ingots were homogenized at 550 ℃. Simultaneously, there are many Al9(MnFe)2Si3 at hundreds of nanometer size precipitated out from the Al-12Si-0.65Mg-(0.10~2.27)Mn (mass fraction, %) alloy matrix after homogenization treatment, and the number of them increases with the increasing of Mn content.

Key wordsMg-containing eutectic Al-Si alloy    Mn    second-phase    direct-chill casting    homogenization
收稿日期: 2017-11-13     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目No.51371045,国家重点研发计划项目Nos.2016YFB0300801和2016YFB1200506-12
作者简介:

作者简介 王光东,男,1990年生,博士生

No. Mg Si Mn Al
1 0.67 11.7 0.00 Bal.
2 0.66 11.4 0.10 Bal.
3 0.60 11.4 0.46 Bal.
4 0.67 11.7 0.60 Bal.
5 0.65 12.2 1.07 Bal.
6 0.60 11.7 2.27 Bal.
表1  合金铸锭化学成分
图1  Al-12Si-0.65Mg-xMn合金铸锭显微组织
图2  Al-12Si-0.65Mg和Al-12Si-0.65Mg-1.07Mn合金铸态组织的SEM-BSE像
Point Al Si Mn Fe Mg
1 93.88 3.98 0.00 0.09 2.06
2 94.32 3.74 0.05 0.09 1.80
3 69.42 17.90 0.00 4.02 8.65
4 75.04 16.07 5.59 1.23 2.07
5 85.59 11.00 0.00 0.05 3.35
6 63.67 11.74 20.30 2.78 1.50
表2  图2中各测试点EDS分析结果
图3  Al-12Si-0.65Mg-(0~2.27)Mn合金铸锭的XRD谱
图4  Al-12Si-0.65Mg-xMn合金经550 ℃、24 h均匀化处理并水淬后的显微组织
图5  Al-12Si-0.65Mg和Al-12Si-0.65Mg-1.07Mn合金铸锭经550 ℃、24 h均匀化处理并水淬后的SEM-BSE像
Point Al Si Mn Fe Mg
1 21.20 78.31 0.00 0.00 0.49
2 58.88 23.20 0.00 6.07 11.84
3 73.87 9.98 12.00 2.21 1.94
4 63.24 11.99 20.46 2.81 1.51
表3  图5中各测试点EDS分析结果
图6  Al-12Si-0.65Mg-xMn合金铸锭经550 ℃、24 h均匀化处理并水淬后的TEM像及图6b中1点的选区电子衍射花样
Point Al Si Mn Fe
1 69.22 14.86 11.90 4.02
2 77.42 11.90 4.58 6.10
表4  图6中各测试点的EDS分析结果
[1] Xiu Z Y, Chen G Q, Wang X F, et al.Microstructure and performance of Al-Si alloy with high Si content by high temperature diffusion treatment[J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 2134
[2] Zuo L, Yu F X, Zhao G, et al.A structural material part of a high Si Mg-containing Al alloy and the manufacture method [P]. Eur Pat, 08772999.2, 2009
[3] Liu F, Yu F X, Zhao D Z, et al.Microstructure and mechanical properties of an Al-12.7Si-0.7Mg alloy processed by extrusion and heat treatment[J]. Mater. Sci. Eng., 2011, A528: 3786
[4] Burger G, Gupta A K, Sutak L, et al.Recrystallization in A6000-series automotive sheet alloy during solution heat treatment practice[J]. Mater. Sci. Forum, 1996, 217: 471
[5] Wang Z W, Wang M P, Wang Z A, et al.Effects of on-line extrusion quenching technique on mechanical properties and microscopic structure of 6005A alloys employed in underground railway trains[J]. Chin. J. Nonferrous Met., 2001, 11: 603(王志伟, 汪明朴, 王正安等. 在线挤压淬火对地铁列车用6005A合金力学性能及微观组织的影响[J]. 中国有色金属学报, 2001, 11: 603)
[6] Lu D H, Jiang Y H, Guan G S, et al.Refinement of primary Si in hypereutectic Al-Si alloy by electromagnetic stirring[J]. J. Mater. Process. Technol., 2007, 189: 13
[7] Lin C, Wu S S, Lv S L, et al.Effects of ultrasonic vibration and manganese on microstructure and mechanical properties of hypereutectic Al-Si alloys with 2%Fe[J]. Intermetallics, 2013, 32: 176
[8] Qiu K, Wang R C, Peng C Q, et al.Effects of Mn and Sn on microstructure of Al-7Si-Mg alloy modified by Sr and Al-5Ti-B[J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 3546
[9] Huang H J, Cai Y H, Cui H, et al.Influence of Mn addition on microstructure and phase formation of spray-deposited Al-25Si-xFe-yMn alloy[J]. Mater. Sci. Eng., 2009, A502: 118
[10] Hwang J Y, Doty H W, Kaufman M J.The effects of Mn additions on the microstructure and mechanical properties of Al-Si-Cu casting alloys[J]. Mater. Sci. Eng., 2008, A488: 496
[11] Wang F, Zhang J S, Xiong B Q, et al.Effect of Fe and Mn additions on microstructure and mechanical properties of spray-deposited Al-20Si-3Cu-1Mg alloy[J]. Mater. Charact., 2009, 60: 384
[12] Wang E R, Hui X D, Chen G L.Eutectic Al-Si-Cu-Fe-Mn alloys with enhanced mechanical properties at room and elevated temperature[J]. Mater. Des., 2011, 32: 4333
[13] Liu Y L, Kang S B.The solidification process of Al-Mg-Si alloys[J]. J. Mater. Sci., 1997, 32: 1443
[14] Yan L Z, Zhang Y A, Li X W, et al.Microstructural evolution of Al-0.66Mg-0.85Si alloy during homogenization[J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 939
[15] Lee D H, Park J H, Nam S W.Enhancement of mechanical properties of Al-Mg-Si alloys by means of manganese dispersoid[J]. Mater. Sci. Technol., 1999, 15: 450
[16] Han Y, Ma K, Li L, et al.Study on microstructure and mechanical properties of Al-Mg-Si-Cu alloy with high manganese content[J]. Mater. Des., 2012, 39: 418
[17] Backerud L, Chai G, Tamminen J.Solidification Characteristics of Aluminium Alloys[M]. Oslo, Norway: AFS/Skanaluminum, 1990: 71
[18] Tebib M, Samuel A M, Ajersch F, et al.Effect of P and Sr additions on the microstructure of hypereutectic Al-15Si-14Mg-4Cu alloy[J]. Mater. Charact., 2014, 89: 112
[19] Wu C T, Lee S L, Hsieh M H, et al.Effects of Mg content on microstructure and mechanical properties of Al-14.5Si-4.5Cu alloy[J]. Metall. Mater. Trans., 2010, 41A: 708
[20] Rincón E, López H F, Cisneros M M, et al.Effect of temperature on the tensile properties of an as-cast aluminum alloy A319[J]. Mater. Sci. Eng., 2007, A452: 682
[21] Mbuya T O, Odera B O, Ng'ang'a S P. Influence of iron on castability and properties of aluminium silicon alloys: Literature review[J]. Int. J. Cast Met. Res., 2003, 16: 451
[22] Cao X, Campbell J.The solidification characteristics of Fe-rich intermetallics in Al-11.5Si-0.4Mg cast alloys[J]. Metall. Mater. Trans., 2004, 35A: 1425
[23] Kuijpers N C W, Vermolen F J, Vuik C, et al. The dependence of the β-AlFeSi to α-Al(FeMn)Si transformation kinetics in Al-Mg-Si alloys on the alloying elements[J]. Mater. Sci. Eng., 2005, A394: 9
[24] Kuilpers N C W, Veremolen F J, Vuik K, et al. A model of the β-AlFeSi to α-Al(FeMn)Si transformation in Al-Mg-Si alloys[J]. Mater. Trans., 2003, 44: 1448
[25] Liu C M, Jiang S N, Chen Z Y, et al.Aluminum Alloy Phase Diagram Set [M]. Changsha: Central South University Press, 2014: 949(刘楚明, 蒋树农, 陈志永等. 铝合金相图集 [M]. 长沙: 中南大学出版社, 2014: 949)
[26] Li Y J, Muggerud A M F, Olsen A, et al. Precipitation of partially coherent α-Al(Mn, Fe)Si dispersoids and their strengthening effect in AA3003 alloy[J]. Acta Mater., 2012, 60: 1004
[27] Dwyer L, Robson J, Fonseca J Q D, et al. Constituent particles and dispersoids in an Al-Mn-Fe-Si Alloy studied in three-dimensions by serial sectioning[J]. Mater. Sci. Forum, 2013, 765: 451
[28] Fung K K, Zhou Y Q.Direct observation of the transformation of the icosahedral phase in (Al6Mn)1-xSix into α(AlMnSi)[J]. Philos. Mag., 1986, 54B: L27
[1] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[2] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[3] 程远遥, 赵刚, 许德明, 毛新平, 李光强. 奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响[J]. 金属学报, 2023, 59(3): 413-423.
[4] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[5] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[6] 耿遥祥, 唐浩, 许俊华, 张志杰, 喻利花, 鞠洪博, 江乐, 简江林. 选区激光熔化高强Al-(Mn, Mg)-(Sc, Zr)合金成形性及力学性能[J]. 金属学报, 2022, 58(8): 1044-1054.
[7] 任平, 陈兴品, 王存宇, 俞峰, 曹文全. 预变形和双级时效对Fe-30Mn-11Al-1.2C奥氏体低密度钢显微组织和力学性能的影响[J]. 金属学报, 2022, 58(6): 771-780.
[8] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[9] 王世宏, 李健, 柴锋, 罗小兵, 杨才福, 苏航. 固溶温度对Fe-19Mn合金的γε相变和阻尼性能的影响[J]. 金属学报, 2020, 56(9): 1217-1226.
[10] 向雪梅, 江河, 董建新, 姚志浩. 难变形高温合金GH4975的铸态组织及均匀化[J]. 金属学报, 2020, 56(7): 988-996.
[11] 邓亚辉, 杨银辉, 蒲超博, 倪珂, 潘晓宇. Mn23%CrNi型双相不锈钢高温拉伸行为的影响[J]. 金属学报, 2020, 56(7): 949-959.
[12] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[13] 王涛,万志鹏,李钊,李佩桓,李鑫旭,韦康,张勇. 热处理工艺对GH4720Li合金细晶铸锭组织与热加工性能的影响[J]. 金属学报, 2020, 56(2): 182-192.
[14] 武华健, 程仁山, 李景仁, 谢东升, 宋锴, 潘虎成, 秦高梧. Al含量对Mg-Sn-Ca合金微观组织与力学性能的影响[J]. 金属学报, 2020, 56(10): 1423-1432.
[15] 陈兴品,李文佳,任平,曹文全,刘庆. C含量对Fe-Mn-Al-C低密度钢组织和性能的影响[J]. 金属学报, 2019, 55(8): 951-957.