Please wait a minute...
金属学报  2018, Vol. 54 Issue (1): 11-20    DOI: 10.11900/0412.1961.2017.00231
  本期目录 | 过刊浏览 |
回火时间对Fe-Cr-Ni-Mo高强钢碳化物演变及力学性能的影响
杜瑜宾1,2, 胡小锋1(), 姜海昌1, 闫德胜1, 戎利建1
1 中国科学院金属研究所中国科学院核用材料与安全评价重点实验室 沈阳 110016
2 中国科学技术大学材料科学与工程学院 沈阳 110016
Effect of Tempering Time on Carbide Evolution and Mechanical Properties in a Fe-Cr-Ni-Mo High-Strength Steel
Yubin DU1,2, Xiaofeng HU1(), Haichang JIANG1, Desheng YAN1, Lijian RONG1
1 Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research,Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China,Shenyang 110016, China
引用本文:

杜瑜宾, 胡小锋, 姜海昌, 闫德胜, 戎利建. 回火时间对Fe-Cr-Ni-Mo高强钢碳化物演变及力学性能的影响[J]. 金属学报, 2018, 54(1): 11-20.
Yubin DU, Xiaofeng HU, Haichang JIANG, Desheng YAN, Lijian RONG. Effect of Tempering Time on Carbide Evolution and Mechanical Properties in a Fe-Cr-Ni-Mo High-Strength Steel[J]. Acta Metall Sin, 2018, 54(1): 11-20.

全文: PDF(1061 KB)   HTML
摘要: 

利用TEM和SEM研究了回火时间(10、20、40和120 min)对不同V含量(0、0.08%、0.14%,质量分数) Fe-Cr-Ni-Mo高强钢碳化物转变和力学性能的影响。结果表明,淬火态0V钢在马氏体板条间析出了少量的M7C3型碳化物,而含V钢中无碳化物析出,因此淬火态0V钢的强度最高(2060 MPa)。回火处理过程中,短时间(20 min)回火时,0V钢仅在板条间析出了M3C型碳化物,随着回火时间延长,M3C型碳化物逐渐转变为M23C6,这2种碳化物尺寸均较粗大(150~300 nm),对合金钢强度的贡献相对较弱,导致0V钢的强度逐渐下降,由回火20 min时的1197 MPa下降到回火120 min后的1088 MPa。加入V后,合金钢经短时间(20 min)回火后不仅在晶界析出M3C,还在晶内析出了数量较多的M2C,且尺寸细小(不大于80 nm),随着回火时间的延长,M3C逐渐分解并形成了数量较多的M6C和更稳定的MC,对合金钢的沉淀强化效果较强,且对塑韧性的影响相对较小。因此随着回火时间的延长,含V钢的强度基本保持不变,而塑韧性呈现增加的趋势,获得了良好的强韧性配合。

关键词 Fe-Cr-Ni-Mo高强钢回火时间碳化物强度低温冲击韧性    
Abstract

Fe-Cr-Ni-Mo steel is widely used in various industrial fields, such as water turbine in hydroelectric power station, pressure vessel and shipbuilding section etc. due to its excellent performance in strength and impact toughness. In order to fulfill the needs of high-strength and good toughness, the quenching and following tempering are often used for this kind of Fe-Cr-Ni-Mo steel. In particular, the carbide precipitation in the tempering process is the key to determine the strength and toughness. In this work, TEM and SEM were used to investigate the effect of tempering time (10, 20, 40 and 120 min) on carbide evolution and mechanical properties of Fe-Cr-Ni-Mo steel with different V contents (0, 0.08% and 0.14%, mass fraction) after quenched at 860 ℃ and following tempering at 610 ℃. The results show that some M7C3 type carbides precipitated along martensite lath boundaries in quenched 0V steel, but no carbide in the quenched 008V and 014V steels. As a result, the strength of 0V steel (2060 MPa) is higher than 008V and 014V (1906 and 1857 MPa, respectively). After tempering for 20 min, a small amount of M3C type carbides were found on the lath boundaries in 0V steel. With tempering time increasing, M3C will transform into M23C6 carbide gradually. Both M3C and M23C6 type carbides exhibited a large size in range from 150 nm to 300 nm which were unfavorable to strength. As a result, the tensile strength of 0V steel decreases from 1197 MPa to 1088 MPa when tempering time increases from 20 min to 120 min. As for the 008V and 014V steels tempered for 20min, there are not only M3C type carbides precipitated in the grain boundary, but also M2C type carbides found inside the grains. The size of both carbides is no larger than 80 nm. With increasing tempering time, the M3C will dissolve gradually and there will precipitate much more M6C and MC. Compared with coarse M3C, the finer M2C, M6C and MC have better precipitation strengthening effect and less deterioration of ductility and toughness. Therefore, with increasing tempering time the strengthes of 008V and 014V steels keep stable and the elongation and impact toughnesses increase gradually. This indicates that the excellent combination of strength and impact toughness can be obtained in 008V and 014V steels.

Key wordsFe-Cr-Ni-Mo    high-strength steel    tempering time    carbide    strength    low temperature impact toughness
收稿日期: 2017-06-14     
ZTFLH:  TG161  
基金资助:国家重点研发计划项目Nos.2016YFB0300601和2016YFB1200501
作者简介:

作者简介 杜瑜宾,男,1993年出生,博士生

Steel C Ni Mn Mo V Cr Si S P Fe
0V 0.30 4.48 0.79 0.63 - 1.05 0.19 0.010 0.0080 Bal.
008V 0.27 4.01 0.65 0.65 0.08 1.02 0.20 0.006 0.0060 Bal.
014V 0.27 3.50 0.49 0.65 0.14 1.02 0.22 0.009 0.0070 Bal.
表1  Fe-Cr-Ni-Mo钢的化学成分
Steel Tempering time Rm
MPa
Rp0.2
MPa
A
%
AKV
J
0V WQ 2060 1444 13.3 15
10 min 1256 1109 16.6 50
20 min 1197 1046 19.6 55
40 min 1124 987 17.1 60
120 min 1088 914 19.1 70
008V WQ 1906 1425 15.0 24
10 min 1292 1169 15.2 48
20 min 1261 1137 18.8 56
40 min 1254 1155 15.5 75
120 min 1235 1120 16.7 68
014V WQ 1857 1479 14.7 23
10 min 1279 1199 14.3 49
20 min 1286 1183 19.8 47
40 min 1303 1204 16.8 52
120 min 1277 1201 17.6 59
表2  不同热处理条件下0V、008V和014V钢的力学性能
图1  0V钢860 ℃淬火态显微组织的SEM像
图2  淬火态0V和008V合金钢显微组织的TEM明场像、暗场像及SAED花样
图3  0V钢610 ℃回火20 min后显微组织的SEM像
图4  0V钢经过610 ℃回火20 min后的碳化物形貌的TEM明场像、暗场像及SAED花样
图5  008V钢经过610 ℃回火20 min后的碳化物形貌的TEM明场像、暗场像及SAED花样
图6  014V钢经过610 ℃回火20 min后的碳化物形貌的TEM明场像、暗场像及SAED花样
Steel Quenched Tempering for 20 min Tempering for 120 min[18,20]
Carbide type Size / nm Carbide type Size / nm Carbide type Size / nm*
0V M7C3 300~450 M3C 150~300 M23C6 195
008V
-
-
M3C 150~210 M6C 35
M2C 50~80 M2C 157
M7C3 40~70
014V - - M3C 150~200 MC 20
M2C 20~40
表3  不同热处理条件下合金钢的碳化物类型及尺寸
图7  008V钢淬火态与610 ℃回火20 min后的-50 ℃冲击和室温拉伸断口形貌的SEM像
[1] Dong J, Zhou X S, Liu Y C, et al.Carbide precipitation in Nb-V-Ti microalloyed ultra-high strength steel during tempering[J]. Mater. Sci. Eng., 2017, A683: 215
[2] Rong Y H.Advanced Q-P-T steels with ultrahigh strength-high ductility[J]. Acta Metall. Sin., 2011, 47: 1483(戎咏华. 先进超高强度—高塑形Q-P-T钢[J]. 金属学报, 2011, 47: 1483)
[3] Kuo K H, Jia C L.Crystallography of M23C6 and M6C precipitated in a low alloy steel[J]. Acta Metall., 1985, 33: 991
[4] Janovec J, Vyrostkova A, Svoboda M.Influence of tempering temperature on stability of carbide phases in 2.6Cr-0.7Mo-0.3V steel with various carbon content[J]. Metall. Mater. Trans., 1994, 25A: 267
[5] Stevens R A, Flewitt P E J. The dependence of creep rate on microstructure in a γ' strengthened superalloy[J]. Acta Metall., 1981, 29: 867
[6] Misra R D K, Jia Z, O'Malley R, et al. Precipitation behavior during thin slab thermomechanical processing and isothermal aging of copper-bearing niobium-microalloyed high strength structural steels: The effect on mechanical properties[J]. Mater. Sci. Eng., 2011, A528: 8772
[7] Zhou S, Zhang K, Wang Y, et al.High strength-elongation product of Nb-microalloyed low-carbon steel by a novel quenching-partitioning-tempering process[J]. Mater. Sci. Eng., 2011, A528: 8006
[8] Lee K H, Park S G, Kim M C, et al.Characterization of transition behavior in SA508 Gr.4N Ni-Cr-Mo low alloy steels with microstructural alteration by Ni and Cr contents[J]. Mater. Sci. Eng., 2011, A529: 156
[9] Lee B S, Kim M C, Yoon J H, et al.Characterization of high strength and high toughness Ni-Mo-Cr low alloy steels for nuclear application[J]. Int. J. Pres. Ves. Pip., 2010, 87: 74
[10] Mulholland M D, Seidman D N.Nanoscale Co-precipitation and mechanical properties of a high-strength low-carbon steel[J]. Acta Mater., 2011, 59: 1881
[11] Wen T, Hu X F, Song Y Y, et al.Effect of tempering temperature on carbide and mechanical properties in a Fe-Cr-Ni-Mo high-strength steel[J]. Acta Metall. Sin., 2014, 50: 447(温涛, 胡小锋, 宋元元等. 回火温度对一种Fe-Cr-Ni-Mo高强钢碳化物及其力学性能的影响[J]. 金属学报, 2014, 50: 447)
[12] Wang L J, Cai Q W, Wu H B, et al.Effects of tempering temperature on the microstructure and mechanical properties of 1500 MPa grade steel directly quenched[J]. J. Univ. Sci. Technol. Beijing, 2010, 32: 1150(王立军, 蔡庆伍, 武会宾等. 回火温度对1500 MPa级直接淬火钢组织与性能的影响[J]. 北京科技大学学报, 2010, 32: 1150)
[13] Liu Q D, Liu W Q, Wang Z M, et al.3D Atom probe characterization of carbides precipitated in the Nb-V microalloyed steel[J]. Acta Metall. Sin., 2008, 44: 786(刘庆冬, 刘文庆, 王泽民等. Nb-V微合金钢中碳化物析出的三维原子探针表征[J]. 金属学报, 2008, 44: 786)
[14] Janovec J, Vyrostková A, Svoboda M, et al.Evolution of secondary phases in Cr-V low-alloy steels during aging[J]. Metall. Mater. Trans., 2004, 35A: 751
[15] Yan W, Zhu L, Sha W, et al.Change of tensile behavior of a high-strength low-alloy steel with tempering temperature[J]. Mater. Sci. Eng., 2009, A517: 369
[16] Vyrostková A, Kroupá A, Janovec J, et al.Carbide reactions and phase equilibria in low alloy Cr-Mo-V steels tempered at 773-993 K. Part I: Experimental measurements[J]. Acta Mater., 1998, 46: 31
[17] Thomson R C, Miller M K.Carbide precipitation in martensite during the early stages of tempering Cr-and Mo-containing low alloy steels[J]. Acta Mater., 1998, 46: 2203
[18] Wen T, Hu X F, Song Y Y, et al.Carbides and mechanical properties in a Fe-Cr-Ni-Mo high-strength steel with different V contents[J]. Mater. Sci. Eng., 2013, A588: 201
[19] Zhang S H.Alloy-Steel [M]. Beijing: Metallurgical Industry Press, 1981: 37(章守华.合金钢[M]. 北京: 冶金工业出版社, 1981: 37)
[20] Wen T.Study on high-strength and high-toughness Fe-Cr-Ni-Mo based steel for gas cylinder application [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2014(温涛. 气瓶用高强高韧Fe-Cr-Ni-Mo系合金钢的研究 [D]. 沈阳: 中国科学院金属研究所, 2014)
[21] Inoue A, Masumoto T.Carbide reactions (M3C→M7C3→M23C6→M6C) during tempering of rapidly solidified high carbon Cr-W and Cr-Mo steels[J]. Metall. Trans., 1980, 11A: 739
[22] Janovec J, Svoboda M, Vyrostková A, et al.Time-temperature-precipitation diagrams of carbide evolution in low alloy steels[J]. Mater. Sci. Eng., 2005, A402: 288
[23] Zhang Y.Application of phase equilibrium thermodynamic method in alloy design for high carbon alloy steel with ultra fine carbides [D]. Dalian: Dalian Maritime University, 2007(张洋. 相平衡热力学方法在超细碳化物高碳合金钢合金设计中的应用 [D]. 大连: 大连海事大学, 2007)
[24] Xie Z J, Ma X P, Shang C J, et al.Nano-sized precipitation and properties of a low carbon niobium micro-alloyed bainitic steel[J]. Mater. Sci. Eng., 2015, A641: 37
[25] Trabadelo V, Giménez S, Gómez-Acebo T, et al.Critical assessment of computational thermodynamics in the alloy design of PM high speed steels[J]. Scr. Mater., 2005, 53: 287
[26] Schneider A, Inden G.Simulation of the kinetics of precipitation reactions in ferritic steels[J]. Acta Mater., 2005, 53: 519
[27] Asadabad M A, Kheirandish S, Novinrooz A J.Tempering behavior of 4.5Cr-2W-0.25V steel[J]. J. Iron Steel Res. Int., 2010, 17: 57
[28] Chen J D, Mo W L, Wang P.Effects of tempering temperature on the impact toughness of steel 42CrMo[J]. Acta Metall. Sin., 2012, 48: 1186(陈俊丹, 莫文林, 王培. 回火温度对42CrMo钢冲击韧性的影响[J]. 金属学报, 2012, 48: 1186)
[1] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[2] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[3] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[4] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[5] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[6] 侯旭儒, 赵琳, 任淑彬, 彭云, 马成勇, 田志凌. 热输入对电弧增材制造船用高强钢组织与力学性能的影响[J]. 金属学报, 2023, 59(10): 1311-1323.
[7] 金鑫焱, 储双杰, 彭俊, 胡广魁. 露点对连续退火0.2%C-1.5%Si-2.5%Mn高强钢选择性氧化及脱碳的影响[J]. 金属学报, 2023, 59(10): 1324-1334.
[8] 李闪闪, 陈云, 巩桐兆, 陈星秋, 傅排先, 李殿中. 冷速对高碳铬轴承钢液析碳化物凝固析出机制的影响[J]. 金属学报, 2022, 58(8): 1024-1034.
[9] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[10] 沈国慧, 胡斌, 杨占兵, 罗海文. 回火温度对含 δ 铁素体高铝中锰钢力学性能和显微组织的影响[J]. 金属学报, 2022, 58(2): 165-174.
[11] 王韬, 龙弟均, 余黎明, 刘永长, 李会军, 王祖敏. 超高压烧结制备14Cr-ODS钢及微观组织与力学性能[J]. 金属学报, 2022, 58(2): 184-192.
[12] 侯嘉鹏, 孙朋飞, 王强, 张振军, 张哲峰. 突破强度-导电率制约关系:晶粒异构设计[J]. 金属学报, 2022, 58(11): 1467-1477.
[13] 赵永好, 毛庆忠. 纳米金属结构材料的韧化[J]. 金属学报, 2022, 58(11): 1385-1398.
[14] 王硕, 王俊升. Al-Li合金中 δ′/θ′/δ复合沉淀相结构演化及稳定性的第一性原理探究[J]. 金属学报, 2022, 58(10): 1325-1333.
[15] 张旭, 田谨, 薛敏涛, 江峰, 李苏植, 张博召, 丁俊, 李小平, 马恩, 丁向东, 孙军. 2000℃高温高承载的Ta-W难熔合金[J]. 金属学报, 2022, 58(10): 1253-1260.