Please wait a minute...
金属学报  2017, Vol. 53 Issue (9): 1091-1100    DOI: 10.11900/0412.1961.2017.00084
  本期目录 | 过刊浏览 |
溶质Ti对Al-Ti-B中间合金细化Al影响的新认识:TiB2粒子的动力学行为及溶质Ti的影响
张丽丽1, 江鸿翔1, 赵九洲1(), 李璐2, 孙倩1
1 中国科学院金属研究所 沈阳 110016
2 国家知识产权局专利局专利审查协作天津中心 天津 300304
A New Understanding Toward Effect of Solute Ti on Grain Refinement of Aluminum by Al-Ti-B Master Alloy: Kinetic Behaviors of TiB2 Particles and Effect of Solute Ti
Lili ZHANG1, Hongxiang JIANG1, Jiuzhou ZHAO1(), Lu LI2, Qian SUN1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 Patent Examination Cooperation Tianjin Center of the Patent Office. SIPO., Tianjin 300304, China
引用本文:

张丽丽, 江鸿翔, 赵九洲, 李璐, 孙倩. 溶质Ti对Al-Ti-B中间合金细化Al影响的新认识:TiB2粒子的动力学行为及溶质Ti的影响[J]. 金属学报, 2017, 53(9): 1091-1100.
Lili ZHANG, Hongxiang JIANG, Jiuzhou ZHAO, Lu LI, Qian SUN. A New Understanding Toward Effect of Solute Ti on Grain Refinement of Aluminum by Al-Ti-B Master Alloy: Kinetic Behaviors of TiB2 Particles and Effect of Solute Ti[J]. Acta Metall Sin, 2017, 53(9): 1091-1100.

全文: PDF(5889 KB)   HTML
  
摘要: 

实验研究了Ti添加量对Al-Ti-B中间合金细化工业纯Al晶粒效果的影响,建立了Al熔体中TiB2粒子动力学行为模型,模拟分析了Al-Ti-B中间合金细化工业纯Al过程中TiB2粒子的溶解、粗化和快速长大行为及溶质Ti的影响。实验和模拟结果表明,Al-Ti-B中间合金细化工业纯Al过程中,TiB2粒子的动力学行为对中间合金细化能力的影响不可忽视,溶质Ti能有效抑制Al熔体中TiB2粒子的溶解、粗化和快速长大行为,影响Al-Ti-B中间合金的细化能力。

关键词 晶粒细化  Al-Ti-B中间合金  TiB2  动力学行为  模拟    
Abstract

Grain refinement may not only promote the formation of a fine quiaxed grain structure, which endows the Al alloy castings with good mechanical properties, but also cause a reduction in the casting defects, such as segregation and hot tearing, which has a dominating effect on the processability of Al alloys. It is, thus, essential for both the cast and wrought Al alloys. Although many techniques, e.g. mechanical vibration, electromagnetic stirring, ultrasound vibration, etc. may be used for the grain refinement nowadays, inoculation remains the most widely applied method in the industrial production due to its simplicity and high efficiency. For most Al alloys, Al-Ti-B master alloy is used as the grain refiner. Much work has been done to investigate the solidification behaviors of the Al alloys inoculated with Al-Ti-B master alloys since the 1970 s. Models were developed to describe the microstructure formation under the effect of inoculants. These researches clearly demonstrate that the grain refining efficiency or the heterogeneous nucleation rate is closely related to the concentration of solute Ti as well as the number density and size distribution of TiB2 particles in the melt. One shortcoming of the previous research work in this field is that the kinetic behaviors of TiB2 particles during the heating or cooling processes of the melt, i.e. dissolution/growth, coarsening and precipitation of TiB2 particles, are neglected. Generally the size distribution of TiB2 particles in the Al-Ti-B master alloy was used in the modeling and simulation of the solidification of Al alloys. In this work, solidification experiments were carried out to investigate the kinetic behaviors of TiB2 particles in the melt and the effect of solute Ti. A model was developed to describe the kinetic behaviors of TiB2 particles during the whole process from the beginning of the addition of TiB2 particles to the melt until the solidification of the melt. Calculations were carried out according to the experiments conditions. The results demonstrate that TiB2 particles may dissolve and coarsen during the holding temperature period, and grow during the cooling period of the melt. The kinetic behaviors of TiB2 particles have an obvious effect on the grain refining efficiency of the master alloys. The addition of solute Ti can significantly suppress the growth/dissolution, the Ostwald ripening of TiB2 particles and thus affects the grain refining efficiency of the master alloy.

Key wordsgrain refinement    Al-Ti-B master alloy    TiB2    kinetic behavior    simulation
收稿日期: 2017-03-17     
ZTFLH:  TG111.4  
基金资助:国家自然科学基金项目Nos.51501207和51471173、中国载人空间站项目No.TGJZ800-2-RW024以及辽宁省自然科学基金项目No.201501043
作者简介:

作者简介 张丽丽,女,1987年生,博士生

Solute element c0 / % k m / (K%-1)
Fe 0.140 0.03 -2.93
Si 0.080 0.12 -6.62
Ga 0.014 0.14 -2.52
Mg 0.003 0.51 -6.20
Cu 0.001 0.17 -3.40
Mn 0.001 0.94 -1.60
表1  工业纯Al中杂质元素及其含量c0、分配系数k和液相线斜率m
图1  Al-3Ti-1B和Al-3Ti中间合金显微组织的SEM像
图2  Al-3Ti-1B中间合金中TiB2粒子的半径RTiB2分布
图3  工业纯Al和不同Al-3Ti添加量下经0.48%(Al-3Ti-1B)中间合金细化处理的工业纯Al微观组织的OM像
图4  工业纯Al平均晶粒尺寸随Al-3Ti添加量(或熔体中溶质Ti浓度)的变化
图5  添加12%(Al-3Ti-1B)中间合金的工业纯Al样品中TiB2粒子形貌的SEM像
图6  添加12%(Al-3Ti-1B)中间合金的工业纯Al样品中TiB2粒子平均半径 R¯TiB2随熔体保温时间的变化
图7  添加0.48%(Al-3Ti-1B)中间合金的Al熔体内溶质Ti及B过饱和度和TiB2粒子体积分数随时间的变化
图8  添加0.48%(Al-3Ti-1B)中间合金的工业纯Al熔体内不同时刻的TiB2粒子尺寸分布
图9  添加0.48%(Al-3Ti-1B)中间合金的工业纯Al熔体内R¯TiB2随时间的变化
图10  不同Al-3Ti中间合金添加量下经0.48%(Al-3Ti-1B)细化处理的工业纯Al熔体中TiB2粒子数量密度NTiB2和R¯TiB2随时间变化
表2  用忽略TiB2粒子动力学行为(NKB)和考虑TiB2粒子动力学行为(CKB)方法计算得到的基体凝固前熔体内NTiB2、溶质Ti的生长限制因子QTi和总的生长限制因子QTotal
Additive amount of the master alloy NTiB2 / 1014 m-3 QTi / K QTotal / K
NKB CKB NKB CKB NKB CKB
0.48%(Al-3Ti-1B) 8.06 6.20 0.883 1.242 1.788 2.147
0.48%(Al-3Ti-1B)+0.11%(Al-3Ti) 8.06 6.72 1.600 1.891 2.505 2.796
0.48%(Al-3Ti-1B)+0.22%(Al-3Ti) 8.06 7.07 2.318 2.567 3.223 3.472
0.48%(Al-3Ti-1B)+0.33%(Al-3Ti) 8.06 7.31 3.035 3.255 3.940 4.160
0.48%(Al-3Ti-1B)+0.54%(Al-3Ti) 8.06 7.61 3.752 4.653 5.374 5.558
  
图11  工业纯Al平均晶粒尺寸随生长限制因子和TiB2粒子数量密度的变化
[1] Quested T E.Understanding mechanisms of grain refinement of aluminium alloys by inoculation[J]. Mater. Sci. Technol., 2004, 20: 1357
[2] Wannasin J, Canyook R, Wisutmethangoon S, et al.Grain refinement behavior of an aluminum alloy by inoculation and dynamic nucleation[J]. Acta Mater., 2013, 61: 3897
[3] Wang H X, Zhang G P, Xu C X, et al.Effect of mechanical vibration on grain refinement and solidification shrinkage of aluminum[J]. Res. Stud. Foundry Equip., 2007, (1): 28(王红霞, 张国平, 许春香等. 机械振动对纯Al晶粒细化及凝固收缩的影响[J]. 铸造设备研究, 2007, (1): 28)
[4] Yu J B.Influence of superposing electricity and magnetic field on the solidification structure of metals [D]. Shanghai: Shanghai University, 2009(余建波. 电、磁复合效应对金属凝固组织的影响 [D]. 上海: 上海大学, 2009)
[5] Zhao Z X.The homogeneity of casting alloy process effected by ultrasonic[J]. Hot Working Technol., 1999, (5): 10(赵忠兴. 超声波对合金结晶过程的均匀化作用[J]. 热加工工艺, 1999, (5): 10)
[6] Li J W, Tao Y Z.Effect of ultrasonic on structure of aluminum alloy ingots[J]. Foundry Technol., 2004, 25: 593(李军文, 桃野正. 超声波对铝合金铸锭组织的影响[J]. 铸造技术, 2004, 25: 593)
[7] Han Y F, Shu D, Wang J, et al.Microstructure and grain refining performance of Al-5Ti-1B master alloy prepared under high-intensity ultrasound[J]. Mater. Sci. Eng., 2006, A430: 326
[8] Birol Y.Efficiency of binary and ternary alloys from Al-Ti-B system in grain refining aluminium foundry alloys[J]. Int. J. Cast Met. Res., 2013, 26: 283
[9] Easton M, StJohn D. Grain refinement of aluminum alloys: Part II. Confirmation of, and a mechanism for, the solute paradigm[J]. Metall. Mater. Trans., 1999, 30A: 1625
[10] Fan Z, Wang Y, Zhang Y, et al.Grain refining mechanism in the Al/Al-Ti-B system[J]. Acta Mater., 2015, 84: 292
[11] Qin T, Fan Z.Reconstruction of 2D Al3Ti on TiB2 in an aluminum melt[J]. Mater. Sci. Eng., 2011, 27: 012004
[12] Maxwell I, Hellawell A.A simple model for grain refinement during solidification[J]. Acta Metall., 1975, 23: 229
[13] Greer A L, Bunn A M, Tronche A, et al.Modelling of inoculation of metallic melts: Application to grain refinement of aluminium by Al-Ti-B[J]. Acta Mater., 2000, 48: 2823
[14] Quested T E, Greer A L.The effect of the size distribution of inoculant particles on as-cast grain size in aluminium alloys[J]. Acta Mater., 2004, 52: 3859
[15] Quested T E, Greer A L.Grain refinement of Al alloys: Mechanisms determining as-cast grain size in directional solidification[J]. Acta Mater., 2005, 53: 4643
[16] Easton M A, StJohn D H. A model of grain refinement incorporating alloy constitution and potency of heterogeneous nucleant particles[J]. Acta Mater., 2001, 49: 1867
[17] Easton M A, StJohn D H. An analysis of the relationship between grain size, solute content, and the potency and number density of nucleant particles[J]. Metall. Mater. Trans., 2005, 36A: 1911
[18] Easton M A, StJohn D H. Improved prediction of the grain size of aluminum alloys that includes the effect of cooling rate[J]. Mater. Sci. Eng., 2008, A486: 8
[19] Jones G P, Pearson J.Factors affecting the grain-refinement of aluminum using titanium and boron additives[J]. Metall. Trans., 1976, 7B: 223
[20] He J, Zhao J Z, Ratke L.Solidification microstructure and dynamics of metastable phase transformation in undercooled liquid Cu-Fe alloys[J]. Acta Mater., 2006, 54: 1749
[21] Zhao J Z, Li H L, Zhang X F, et al.Microstructure evolution during a liquid-liquid decomposition under the common action of the nucleation, growth and Ostwald ripening of droplets[J]. Int. J. Mater. Res., 2009, 100: 46
[22] Takaimchi I, Roderick I L, translated by Xian A P, Wang L W. The Physical Properties of Liquid Metals [M]. Beijing: Science Press, 2006: 73(Takaimchi I, Roderick I L著, 冼爱平, 王连文译. 液态金属的物理性能 [M]. 北京: 科学出版社, 2006: 73)
[23] Sun X Y.Study on refinement mechanism of Al-Ti-B and Al-Ti-C master alloys in aluminum and its alloys [D]. Beijing: Tsinghua University, 2011(孙雪迎. Al-Ti-B、Al-Ti-C中间合金细化铝及铝合金机制研究 [D]. 北京: 清华大学, 2011)
[24] Sigworth G K.The grain refining of aluminum and phase relationships in the Al-Ti-B system[J]. Metall. Trans., 1984, 15A: 277
[25] Zhao J Z, Gao L L, He J, et al.Liquid-liquid phase transformation kinetics of an atomized Al-Pb alloy drop[J]. Acta Metall. Sin., 2006, 42: 113(赵九洲, 高玲玲, 何杰等. Al-Pb合金雾化液滴的液-液相变动力学[J]. 金属学报, 2006, 42: 113)
[26] Liu D M, Zhao J Z, Ye H Q.Modeling of the solidification of gas-atomized alloy droplets during spray forming[J]. Acta Metall. Sin., 2003, 39: 375(刘东明, 赵九洲, 叶恒强. 喷射成形中金属液滴凝固过程的计算机模拟[J]. 金属学报, 2003, 39: 375)
[27] Teng X R.Surfactant Chemistry [M]. Beijing: Chemical Industry Press, 2009: 46(滕新荣. 表面物理化学 [M]. 北京: 化学工业出版社, 2009: 46)
[28] Kaptay G.Partial surface tension of components of a solution[J]. Langmuir, 2015, 31: 5796
[29] Kaptay G.Modelling equilibrium grain boundary segregation, grain boundary energy and grain boundary segregation transition by the extended Butler equation[J]. J. Mater. Sci., 2016, 51: 1738
[30] Men H, Fan Z Y.An analytical model for solute segregation at liquid metal/solid substrate interface[J]. Metall. Mater. Trans., 2014, 45A: 5508
[31] Han Y F.Study on Al-5Ti-1B master alloy prepared under ultrasound and α-Al/diboride interface [D]. Shanghai: Shanghai Jiao Tong University, 2007(韩延峰. 超声制备Al-5Ti-1B中间合金及α-Al/异质核心界面研究 [D]. 上海: 上海交通大学, 2007)
[32] Feuerbacher B, Hamacher H, Naumann R J.Materials Sciences in Space: A Contribution to the Scientific Basis of Space Processing[M]. Berlin: Springer-Verlag, 1986: 11
[1] 陈瑞, 许庆彦, 郭会廷, 夏志远, 吴勤芳, 柳百成. Al-7Si-Mg铝合金拉伸过程应变硬化行为及力学性能模拟研究[J]. 金属学报, 2017, 53(9): 1110-1124.
[2] 张 林 李 蔚 刘永利 孙本哲 王佳庆. TiAl合金基体表面Ti薄膜在升温过程中结构变化的分子动力学模拟[J]. 金属学报, 2011, 47(8): 1080-1085.
[3] 金小礼 雷作胜 于湛 张浩斌 邓康 任忠鸣. Ar气泡在连铸坯固/液界面处运动行为的物理模拟研究[J]. 金属学报, 2011, 47(6): 763-768.
[4] 陈雯 杜荣归 胡融刚 时海燕 朱燕峰 林昌健. 模拟混凝土孔隙液中钢筋表面膜组成与腐蚀行为的关联[J]. 金属学报, 2011, 47(6): 735-742.
[5] 刘东升 程丙贵 罗咪. F460高强韧厚船板焊接热影响区的组织和冲击断裂行为[J]. 金属学报, 2011, 47(10): 1233-1240.
[6] 张伟彬 沙春生 杜勇 温光华 谢文 王社权. 梯度硬质合金梯度层形成的计算机模拟及验证[J]. 金属学报, 2011, 47(10): 1307-1314.
[7] 赵秋月 张廷安 曹晓畅 刘燕 蒋孝丽. 冶金搅拌管式反应器内液/固两相流模拟的研究[J]. 金属学报, 2010, 46(8): 1004-1008.
[8] 李海丽 赵九洲. Al-Pb偏晶合金连续凝固过程模拟[J]. 金属学报, 2010, 46(6): 695-700.
[9] 贾文鹏 汤慧萍 贺卫卫 林鑫 黄卫东. 316L不锈钢激光快速成形的微观组织模拟[J]. 金属学报, 2010, 46(2): 135-140.
[10] 乔冰 杜荣归 陈雯 朱燕峰 林昌健. NO2-和Cl-对模拟混凝土孔隙液中钢筋腐蚀行为的影响[J]. 金属学报, 2010, 46(2): 245-250.
[11] 王荣山 侯怀宇 陈国良. 非晶Cu在晶化过程中的分子动力学模拟[J]. 金属学报, 2009, 45(6): 692-696.