Please wait a minute...
金属学报  2017, Vol. 53 Issue (8): 975-982    DOI: 10.11900/0412.1961.2016.00566
  本期目录 | 过刊浏览 |
不同环境介质中X70钢的交流腐蚀行为及腐蚀产物膜层分析
张慧, 杜艳霞(), 李伟, 路民旭
北京科技大学新材料技术研究院腐蚀与防护中心 北京 100083
Investigation on AC-Induced Corrosion Behavior and Product Film of X70 Steel in Aqueous Environment with Various Ions
Hui ZHANG, Yanxia DU(), Wei LI, Minxu LU
Corrosion and Protection Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

张慧, 杜艳霞, 李伟, 路民旭. 不同环境介质中X70钢的交流腐蚀行为及腐蚀产物膜层分析[J]. 金属学报, 2017, 53(8): 975-982.
Hui ZHANG, Yanxia DU, Wei LI, Minxu LU. Investigation on AC-Induced Corrosion Behavior and Product Film of X70 Steel in Aqueous Environment with Various Ions[J]. Acta Metall Sin, 2017, 53(8): 975-982.

全文: PDF(1551 KB)   HTML
  
摘要: 

通过交流腐蚀模拟实验考察了X70钢在4种环境介质中的交流腐蚀行为,获得了X70钢在4种介质中的腐蚀速率Kd。结果表明,腐蚀速率Kd (NaCl)>Kd Na2SO4)>Kd (CaCl2)>Kd (MgCl2)。采用SEM、EDS和XRD对腐蚀产物膜的表面/截面微观形貌、元素和物相成分进行了表征与分析,探讨了X70钢在相同交流电流密度下,不同介质中腐蚀速率差异的原因:在Na2SO4和NaCl介质中,腐蚀产物膜比较疏松,侵蚀性离子SO42-和Cl-的存在会加速X70钢的腐蚀,Na+不会影响腐蚀产物膜的形成;在MgCl2和CaCl2介质中,Ca2+和Mg2+的存在有利于形成保护性好的致密腐蚀产物膜。

关键词 X70钢交流腐蚀环境介质腐蚀速率腐蚀产物膜    
Abstract

During the past decades, more buried oil or gas pipeline failures have been attributed to alternating current (AC) interference, and finally, those corrosion failures were investigated and the AC current density was identified as the critical influence parameter. There is general agreement on AC current density as a chief factor in determining metal wastage condition or assessing the AC corrosion risk for any type of soil in the presence of AC corrosion. Different degrees of AC corrosion may occurr if long distance pipelines pass through different kinds of soil environments, however, the effect of soil ions on pipeline steel without cathodic protection is still not well understood. Therefore, it is imperative to study the AC corrosion behaviors of pipeline steel in different soil environments. In the AC corrosion simulation experiment, by investigating the AC corrosion behaviors of X70 steel in 4 kinds of environmental media, the corrosion rates (Kd) were obtained, whose order was Kd (NaCl)>Kd Na2SO4)>Kd (CaCl2)>Kd (MgCl2). SEM, EDS and XRD were used to characterize and analyse the microscope morphologies, elements and phase compositions of the corrosion product films surfaces/cross-sections. Under the same AC current density, the reasons of differences of X70 steel's corrosion rate in different media were discussed. The presence of corrosive ions SO42- and Cl- would accelerate the corrosion rate, Na+ would not affect the formation of corrosion product film in NaCl and Na2SO4 solution media, however, the presence of Ca2+ and Mg2+ were helpful to form protective corrosion product films in MgCl2 and CaCl2 solution media.

Key wordsX70 steel    AC corrosion    environmental media    corrosion rate    corrosion product film
收稿日期: 2016-12-19     
ZTFLH:  TE988  
基金资助:国家自然科学基金项目No.51401017,国家重点研发计划项目Nos.2016YFC0802101和2016YFC0802103
作者简介:

作者简介 张 慧,女,1993年生,硕士生

图1  实验装置图
Corrosion medium Mass concentration of solution Resistivity of corrosion medium
gL-1 Ωm
Na2SO4 solution with quartz sand 4 8.80
MgCl2 solution with quartz sand 4 6.08
CaCl2 solution with quartz sand 3 7.40
NaCl solution with quartz sand 3.28 5.90
表1  模拟环境介质参数
图2  300 A/m2交流干扰下X70钢在4种介质中腐蚀168 h后的腐蚀速率
图3  300 A/m2交流干扰下X70钢在4种介质中腐蚀产物的XRD谱
图4  X70钢腐蚀产物膜表面微观形貌的SEM像
图5  X70钢腐蚀产物膜截面微观形貌的SEM像
图6  X70钢在4种介质中腐蚀产物膜截面成分的EDS分析
[1] Jiang Z T, Du Y X, Dong L, et al.Effect of AC current on corrosion potential of Q235 steel[J]. Acta Metall. Sin., 2011, 47: 997(姜子涛, 杜艳霞, 董亮等. 交流电对Q235钢腐蚀电位的影响规律研究[J]. 金属学报, 2011, 47: 997)
[2] Wakelin R G, Sheldon C.Investigation and mitigation of AC corrosion on a 300 mm natural gas pipeline [A]. Corrosion 2004[C]. Houston, TX: NACE International, 2004: 205
[3] Gummow R A, Wakelin R G, Segall S M.AC corrosion——A new challenge to pipeline integrity [A]. Corrosion 1998[C]. San Diego, CA: NACE International, 1998: 566
[4] Floyd R.Testing and mitigation of AC corrosion on 8 Line: A field study [A]. Corrosion 2004[C]. Houston, TX: NACE International, 2004: 210
[5] Hanson H R, Smart J.AC corrosion on a pipeline located in a HVAC utility corridor [A]. Corrosion 2004[C]. Houston, TX: NACE International, 2004: 209
[6] Movley C.Pipeline corrosion from induced A.C. [A]. Corrosion 2005[C]. Houston, TX: NACE International, 2005: 132
[7] Jones D A.Effect of alternating current on corrosion of low alloy and carbon steels[J]. Corrosion, 1978, 34: 428
[8] Pookote S R, Chin D T.Effect of alternating current on the underground corrosion of steels[J]. Mater. Perform., 1978, 17(3): 9
[9] Collet E, Delores B, Gabillard M, et al.Corrosion due to AC influence of very high voltage power lines on polyethylene-coated steel pipelines: Evaluation of risks-preventive measures[J]. Anti-Corros. Methods Mater., 2001, 48(4): 221
[10] Pourbaix A, Carpentiers P, Gregoor R.Detection and assessment of alternating current corrosion[J]. Mater. Perform., 2000, 39(3): 34
[11] Goidanich S, Lazzari L, Ormellese M.AC corrosion. Part 2: Parameters influencing corrosion rate[J]. Corros. Sci., 2010, 52: 916
[12] Cao C N.Environmental Corrosion of Materials in China [M]. Beijing: Chemical Industrial Press, 2005: 373(曹楚南. 中国材料的自然环境腐蚀 [M]. 北京: 化学工业出版社, 2005: 373)
[13] Torstensen A.AC corrosion on cathodically protected steel [D]. Trondheim: Norwegian University of Science and Technology, 2012
[14] Lilleby L.Effect of AC current on calcareous deposits [D]. Trondheim: Norwegian University of Science and Technology, 2009
[15] Prinz W.AC induced corrosion on cathodically protected pipelines[J]. UK Corro., 1992, 92: 1
[16] Helm G, Heim T, Heinzen H, et al.Investigation of corrosion of cathodically protected steel subjected to alternating currents[J]. 3R Int., 1993, 32: 246
[17] Fu A Q, Cheng Y F.Effects of alternating current on corrosion of a coated pipeline steel in a chloride-containing carbonate/bicarbonate solution[J]. Corros. Sci., 2010, 52: 612
[18] Yin K H, Tang M H, Xiong X J.Corrosion of buried steel structure under effect of electric field with industrial frequency[J]. J. Chin. Soc. Corros. Prot., 1982, 2(3): 33(尹可华, 唐明华, 熊祥键. 埋地钢构筑物在工频电场作用下的腐蚀[J]. 中国腐蚀与防护学报, 1982, 2(3): 33)
[19] Yang Y. AC corrosion behavior and mechanism of X70 pipeline steel [D]. Qingdao: China University of Petroleum (East China), 2013(杨燕. X70钢交流腐蚀行为及机理研究 [D]. 青岛: 中国石油大学(华东), 2013)
[20] Jüttner K, Reitz M, Sch?fer S, et al. Rotating ring-disk studies on the impact of superimposed large signal AC currents on the cathodic protection of steel [J]. Mater. Sci. Forum, 1998, 289-292: 107
[21] Smith D C, McEnaney B. The influence of dissolved oxygen concentration on the corrosion of grey cast iron in water at 50 ℃[J]. Corros. Sci., 1979, 19: 391
[22] Raman A, Nasrazadani S, Sharma L.Morphology of rust phases formed on weathering steels in various laboratory corrosion tests[J]. Metallography, 1989, 22: 79
[23] Majzlan J, Mazeina L, Navrotsky A.Enthalpy of water adsorption and surface enthalpy of lepidocrocite (γ-FeOOH)[J]. Geochim. Cosmochim. Acta, 2007, 71: 615
[24] Misawa T, Asami K, Hashimoto K, et al.The mechanism of atmospheric rusting and the protective amorphous rust on low alloy steel[J]. Corros. Sci., 1974, 14: 279
[25] Sun M, Xiao K, Dong C F, et al.Electrochemical behaviors of ultra high strength steels with corrosion products[J]. Acta Metall. Sin., 2011, 47: 442(孙敏, 肖葵, 董超芳等. 带腐蚀产物超高强度钢的电化学行为[J]. 金属学报, 2011, 47: 442)
[26] Liu W X, Sun C.Effects of different cathodic ions on the corrosion of carbon steel in soils[J]. Total Corros. Control, 2006, 20(6): 10(刘文霞, 孙成. 土壤中阴离子对碳钢腐蚀的影响[J]. 全面腐蚀控制, 2006, 20(6): 10)
[27] Xie Y, Li Y, Sun T, et al.Study of the protective property of in-situ pure γ-FeOOH and α-FeOOH corrosion product film on Q235 steel[J]. Chin. Sci. Bull., 2008, 53: 2848(谢颖, 李瑛, 孙挺等. 原位生长的纯γ-FeOOH和α-FeOOH锈膜对Q235钢保护性能的研究[J]. 科学通报, 2008, 53: 2848)
[28] Lin J P, Ellaway M, Adrien R.Study of corrosion material accumulated on the inner wall of steel water pipe[J]. Corros. Sci., 2001, 43: 2065
[29] Zhao G X, Chen C F, Lu M X, et al.The formation of product scale and mass transfer channels during CO2 corrosion[J]. J. Chin. Soc. Corros. Prot., 2002, 22: 363(赵国仙, 陈长风, 路民旭等. CO2腐蚀的产物膜及膜中物质交换通道的形成[J]. 中国腐蚀与防护学报, 2002, 22: 363)
[1] 秦润之, 杜艳霞, 路民旭, 欧莉, 孙海明. 高压直流干扰下X80钢在广东土壤中的干扰参数变化规律及腐蚀行为研究[J]. 金属学报, 2018, 54(6): 886-894.
[2] 徐伟,路新,杜艳霞,孟庆宇,黎鸣,曲选辉. 粉末冶金制备Ti-Fe二元合金的耐腐蚀性能[J]. 金属学报, 2017, 53(1): 38-46.
[3] 卿永长,杨志炜,鲜俊,许进,闫茂成,吴堂清,于长坤,于利宝,孙成. 交流电和微生物共同作用下Q235钢的腐蚀行为*[J]. 金属学报, 2016, 52(9): 1142-1152.
[4] 许立宁,王贝,路民旭. 6.5%Cr钢在高温高压CO2环境下的腐蚀行为研究*[J]. 金属学报, 2016, 52(6): 672-678.
[5] 杨燕,李自力,文闯. 交流电对X70钢表面形态及电化学行为的影响[J]. 金属学报, 2013, 49(1): 43-50.
[6] 彭欣 王佳 山川 王海杰 刘在健 邹妍. 带锈碳钢在流动海水中的长期腐蚀行为[J]. 金属学报, 2012, 48(10): 1260-1266.
[7] 钱桂安 洪友士. 环境介质对40Cr结构钢高周和超高周疲劳行为的影响[J]. 金属学报, 2009, 45(11): 1356-1363.
[8] 孙建波 柳伟 常炜 张忠铧 李忠涛 于湉 路民旭. 低铬X65管线钢CO2腐蚀产物膜的特征及形成机制[J]. 金属学报, 2009, 45(1): 84-90.
[9] 刘智勇; 翟国丽; 杜翠薇; 李晓刚 . X70钢在酸性土壤模拟溶液中的应力腐蚀行为[J]. 金属学报, 2008, 44(2): 209-214 .
[10] 安百刚; 张学元; 韩恩厚 . 沈阳大气环境下纯铜的初期腐蚀行为研究[J]. 金属学报, 2007, 42(1): 77-81 .
[11] 杨丽颖; 柳伟; 路民旭 . 氮元素对2Cr13不锈钢CO2腐蚀产物膜结构和电化学性能的影响[J]. 金属学报, 2006, 42(12): 1279-1284 .
[12] 陈长风; 路民旭; 赵国仙; 白真权; 严密林; 杨延清 . N80油套管钢CO2腐蚀产物膜特征[J]. 金属学报, 2002, 38(4): 411-416 .
[13] 朱小龙;林乐耘;雷廷权. 70Cu—30Ni合金海水腐蚀产物膜形成过程[J]. 金属学报, 1997, 33(12): 1256-1261.
[14] 王政富;柯伟;朱祖铭. 腐蚀疲劳过程的声发射[J]. 金属学报, 1990, 26(1): 102-106.
[15] 裴鸿勋;杨京俊;柯伟. 海洋用结构钢在NaCl溶液中疲劳短裂纹的扩展[J]. 金属学报, 1988, 24(6): 471-475.