Please wait a minute...
金属学报  2017, Vol. 53 Issue (7): 869-878    DOI: 10.11900/0412.1961.2017.00015
  本期目录 | 过刊浏览 |
片层石墨尺寸对片层石墨/Al复合材料的强度和热导率的影响
刘晓云1,2,王文广2,王东2,肖伯律2,倪丁瑞2,陈礼清1,马宗义2()
1 东北大学轧制技术及连轧自动化国家重点实验室 沈阳 110819
2 中国科学院金属研究所沈阳材料科学国家(联合)实验室 沈阳 110016
Effect of Graphite Flake Size on the Strength and Thermal Conductivity of Graphite Flakes/Al Composites
Xiaoyun LIU1,2,Wenguang WANG2,Dong WANG2,Bolv XIAO2,Dingrui NI2,Liqing CHEN1,Zongyi MA2()
1 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
2 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

刘晓云,王文广,王东,肖伯律,倪丁瑞,陈礼清,马宗义. 片层石墨尺寸对片层石墨/Al复合材料的强度和热导率的影响[J]. 金属学报, 2017, 53(7): 869-878.
Xiaoyun LIU, Wenguang WANG, Dong WANG, Bolv XIAO, Dingrui NI, Liqing CHEN, Zongyi MA. Effect of Graphite Flake Size on the Strength and Thermal Conductivity of Graphite Flakes/Al Composites[J]. Acta Metall Sin, 2017, 53(7): 869-878.

全文: PDF(1498 KB)   HTML
摘要: 

采用粉末冶金法制备了名义尺寸为150、300、500 μm的片层石墨(graphite flakes, Gf)增强铝基(50%Gf/Al,体积分数)复合材料,得到密度均接近理论密度的致密复合材料坯锭。片层石墨与铝合金基体结合紧密,界面处无裂纹、孔洞等缺陷。片层石墨的(001)Gf基面与复合材料坯锭的圆周方向(坯锭的xy平面)基本平行,但受粉末冶金工艺的影响,较小片层石墨的(001)Gf基面与坯锭的xy平面略有偏差。随着片层石墨的尺寸增大,偏差逐渐减少。复合材料的强度随着片层石墨尺寸增加逐渐降低。150 μm片层石墨复合材料的弯曲强度为82 MPa,当片层石墨尺寸增至500 μm时,强度降低至39 MPa。片层石墨强度较低,裂纹容易沿片层石墨的层间扩展,随着片层石墨尺寸增大,这一现象更加明显,容易在断口中观察到片层石墨剥离的现象。复合材料xy平面的热导率随片层石墨尺寸增大而增加,最高可达604 W/(mK),与尺寸较小的片层石墨相比提高63%。300、500 μm片层石墨复合材料的界面换热系数略低于理论值,但150 μm片层石墨复合材料的界面换热系数明显小于理论值。除了片层石墨的尺寸,其形状、分布和内部缺陷等对复合材料的热导率也有一定的影响。

关键词 片层石墨铝基复合材料热导率力学性能    
Abstract

Graphite flakes reinforced Al matrix composites (Gf /Al) with low density, good machining property and high thermal conductivity are considered an excellent heat sink materials used in electronic industry. When the composites are manufactured by liquid method such as liquid infiltration, it is easy to achieve a high thermal conductivity composite. However, the Al4C3 phase would be formed in the composite, which will decrease the corrosion properties of the composites. The powder metallurgy technique could avoid the formation of the Al4C3 phase. In this work, three seized graphite flakes (150, 300, 500 μm) were used to investigate the effect of the graphite flake size on the strength and thermal conductivity of Gf/Al alloy composites. The 50%Gf /Al alloy (volume fraction) composites were fabricated by the powder metallurgy technique. The density of all the three Gf /Al alloy composites were similar to the theoretical density. The graphite flakes had a well bonding with Al alloy matrix without cracks and pores. The (001)Gf basal plane of the graphite flakes were almost parallel to the circular plane (xy plane) of the composites ingot. However, for the small graphite flakes, their (001)Gf basal plane was not well parallel to the xy plane of the composite ingot due to the powder metallurgy process. For the large graphite flakes, they exhibited a good orientation in the xy plane of the composite ingot. The strength of the Gf /Al alloy composites decreased with the increase of the graphite flake size. For the 150 μm graphite flake, the bending strength of the Gf /Al alloy composite was 82 MPa. However, for the 500 μm graphite flake, the bending strength of the composite decreased to 39 MPa. Due to the low strength between the layers of the graphite flake, the cracks were prone to expand in the graphite flake. As the size of the graphite flake increased, this phenomenon became more obviously. It is easy to observe that the graphite flakes peeled off on the fracture surfaces. When the size of the graphite flake increased from 150 μm to 500 μm, the thermal conductivity increased by 63%. The highest thermal conductivity was 604 W/(mK). The interfacial thermal conductance (hc) of the composites were calculated by the Maxwell-Garnett type effective medium approximation model. The hc of 300 and 500 μm graphite flake Gf /Al alloy composites were slightly lower than the theoretical value (calculated by the acoustic mismatch model). However, the hc of the 150 μm graphite flake Gf /Al alloy composite was lower than that of the theoretical value. Besides the size of the graphite flakes, the shape, distribution and defect of the graphite flakes also influenced the thermal conductivity of the composites.

Key wordsgraphite flake    aluminum matrix composite    thermal conductivity    mechanical property
收稿日期: 2017-01-13     
基金资助:国家自然科学基金项目Nos.U1508216和51271051
图1  不同尺寸片层石墨的SEM像
图2  不同尺寸片层石墨的XRD谱
图3  不同尺寸片层石墨Gf /Al复合材料的SEM像
图4  不同尺寸片层石墨Gf /Al复合材料的放大SEM像
图5  500 μm片层石墨Gf /Al复合材料界面的TEM和HRTEM像
Graphite flake size Relative density Bending strength Thermal conductivity
μm (ρexp /ρthe) / % MPa Wm-1K-1
150 99.9 82 370
300 99.5 42 480
500 99.6 39 604
表1  不同片层石墨尺寸Gf /Al复合材料的致密度和性能
图6  不同尺寸片层石墨Gf /Al复合材料断口的SEM像
Material Density Thermal conductivity Specific heat Phonon velocity
kgm-3 Wm-1K-1 Jkg-1K-1 ms-1
Graphite 2200 1200 710 14800
Al 2700 180 895 3620
表2  AMM模型的材料参数[24,25]
[1] Sidhu S S, Kumar S, Batish A.Metal matrix composites for thermal management: A review[J]. Crit. Rev. Solid State Mater. Sci., 2016, 41: 132
[2] Mathias J D, Geffroy P M, Silvain J F.Architectural optimization for microelectronic packaging[J]. Appl. Therm. Eng., 2009, 29: 2391
[3] Rawal S P.Metal-matrix composites for space applications[J]. JOM, 2001, 53(4): 14
[4] Xia Y, Song Y Q, Cui S, et al.Progress in thermal management materials[J]. Mater. Rev., 2008, 22(1): 4
[4] (夏杨, 宋月清, 崔舜等. 热管理材料的研究进展[J]. 材料导报, 2008, 22(1): 4)
[5] Xue C, Yu J K.Enhanced thermal transfer and bending strength of SiC/Al composite with controlled interfacial reaction[J]. Mater. Des., 2014, 53: 74
[6] Liu X Y, Wang W G, Wang D, et al.Effect of nanometer TiC coated diamond on the strength and thermal conductivity of diamond/Al composites[J]. Mater. Chem. Phys., 2016, 182: 256
[7] Yoshida K, Morigami H.Thermal properties of diamond/copper composite material[J]. Microelectron. Reliab., 2004, 44: 303
[8] Fu H T, Huang Y, Wu H W, et al.Synthesis by vacuum infiltration, microstructure, and thermo-physical properties of graphite-aluminum composite[J]. ?Adv. Eng. Mater., 2016, 18: 1609
[9] Zhou S X, Chiang S, Xu J Z, et al.Modeling the in-plane thermal conductivity of a graphite/polymer composite sheet with a very high content of natural flake graphite[J]. Carbon, 2012, 50: 5052
[10] Li W J, Liu Y, Wu G H.Preparation of graphite flakes/Al with preferred orientation and high thermal conductivity by squeeze casting[J]. Carbon, 2015, 95: 545
[11] Kurita H, Miyazaki T, Kawasaki A, et al.Interfacial microstructure of graphite flake reinforced aluminum matrix composites fabricated via hot pressing[J]. Composites, 2015, 73A: 125
[12] Prieto R, Molina J M, Narciso J, et al.Thermal conductivity of graphite flakes-SiC particles/metal composites[J]. Composites, 2011, 42A: 1970
[13] Yang Y W, Huang Y, Wu H W, et al.Interfacial characteristic, thermal conductivity, and modeling of graphite flakes/Si/Al composites fabricated by vacuum gas pressure infiltration[J]. J. Mater. Res., 2016, 31: 1723
[14] Prieto R, Molina J M, Narciso J, et al.Fabrication and properties of graphite flakes/metal composites for thermal management applications[J]. Scr. Mater., 2008, 59: 11
[15] Chen J K, Huang I S.Thermal properties of aluminum-graphite composites by powder metallurgy[J]. Composites, 2013, 44B: 698
[16] Wang D, Xiao B L, Wang Q Z, et al.Friction stir welding of SiCp/2009Al composite plate[J]. Mater. Des., 2013, 47: 243
[17] Huang Y, Ouyang Q B, Guo Q, et al.Graphite film/aluminum laminate composites with ultrahigh thermal conductivity for thermal management applications[J]. Mater. Des., 2016, 90: 508
[18] Zhou C, Huang W, Chen Z, et al.In-plane thermal enhancement behaviors of Al matrix composites with oriented graphite flake alignment[J]. Composites, 2015, 70B: 256
[19] Wang D, Xiao B L, Wang Q Z, et al.Evolution of the microstructure and strength in the nugget zone of friction stir welded SiCp/Al-Cu-Mg composite[J]. J. Mater. Sci. Technol., 2014, 30: 54
[20] Xue C, Bai H, Tao P F, et al.Thermal conductivity and mechanical properties of flake graphite/Al composite with a SiC nano-layer on graphite surface[J]. Mater. Des., 2016, 108: 250
[21] Nan C W, Birringer R, Clarke D R, et al.Effective thermal conductivity of particulate composites with interfacial thermal resistance[J]. J. Appl. Phys., 1997, 81: 6692
[22] Wang Z T, Tian R Z.Aluminum Alloy and Its Processing Manual [M]. 3rd Ed., Changsha: Central South University Press, 2005: 314
[22] (王祝堂, 田荣璋. 铝合金机器加工手册 [M]. 长沙: 中南大学出版社, 2005: 314)
[23] Molina J M, Louis E.Anisotropy in thermal conductivity of graphite flakes-SiCp/matrix composites: implications in heat sinking design for thermal management applications[J]. Mater. Charact., 2015, 109: 107
[24] Shenogin S, Gengler J, Roy A, et al.Molecular dynamics studies of thermal boundary resistance at carbon-metal interfaces[J]. Scr. Mater., 2013, 69: 100
[25] Chu K, Jia C C, Liang X B, et al.Modeling the thermal conductivity of diamond reinforced aluminium matrix composites with inhomogeneous interfacial conductance[J]. Mater. Des., 2009, 30: 4311
[26] Zhou C, Ji G, Chen Z, et al.Fabrication, interface characterization and modeling of oriented graphite flakes/Si/Al composites for thermal management applications[J]. Mater. Des., 2014, 63: 719
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[11] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[14] 马宗义, 肖伯律, 张峻凡, 朱士泽, 王东. 航天装备牵引下的铝基复合材料研究进展与展望[J]. 金属学报, 2023, 59(4): 457-466.
[15] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.