Please wait a minute...
金属学报  2017, Vol. 53 Issue (6): 743-750    DOI: 10.11900/0412.1961.2016.00463
  本期目录 | 过刊浏览 |
取向硅钢低温加热工艺中渗氮工序的实验与数值模拟研究
曾贵民1,罗海文1(),李军2,龚坚3,黎先浩3,王现辉3
1 北京科技大学冶金与生态工程学院 北京 100083
2 安泰科技股份有限公司功能材料事业部 北京 1000813 首钢股份公司迁安钢铁公司 迁安 064404
Experimental Studies and Numerical Simulation on the Nitriding Process of Grain-Oriented Silicon Steel
Guimin ZENG1,Haiwen LUO1(),Jun LI2,Jian GONG3,Xianhao LI3,Xianhui WANG3
1 School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Functional Materials Branch, Advanced Technology and Materials Co. Ltd., Beijing 100081, China
3 Qian'an Steel Corp., Shougang Co. Ltd., Qian'an 064404, China
引用本文:

曾贵民,罗海文,李军,龚坚,黎先浩,王现辉. 取向硅钢低温加热工艺中渗氮工序的实验与数值模拟研究[J]. 金属学报, 2017, 53(6): 743-750.
Guimin ZENG, Haiwen LUO, Jun LI, Jian GONG, Xianhao LI, Xianhui WANG. Experimental Studies and Numerical Simulation on the Nitriding Process of Grain-Oriented Silicon Steel[J]. Acta Metall Sin, 2017, 53(6): 743-750.

全文: PDF(1318 KB)   HTML
摘要: 

通过在实验室模拟取向硅钢的渗氮生产工序,实测了不同渗氮时间下的渗氮量,并通过EPMA、FESEM等观察了渗氮后氧化层的变化、N在硅钢带厚度方向的浓度梯度。根据实测的组织形貌和渗氮动力学特点,首次建立了针对取向硅钢的渗氮动力学模型,并成功地进行了数值模拟计算。研究结果表明:(1) 取向硅钢带的平均N含量在渗氮初期增加缓慢,之后逐渐加快,直至90 s时渗氮速率达到最大值之后保持恒定;在750 ℃渗氮2 min时间内,在近表面0.04 mm范围内存在显著的N浓度梯度;(2) 脱碳退火后,取向硅钢的氧化层主要为层状氧化物,渗氮时氧化层被H2还原,层状氧化物转变为球状,氧化层的变化对渗氮动力学影响显著;(3) 分析了N由气相穿过表面氧化层至Fe基体的传质系数所遵循的可能模型,发现只有当传质系数遵循氧化层还原动力学模型时,即Avrami函数模型f=A(1-exp(-ktn)),计算结果才能与实测的渗氮动力学特征高度吻合。

关键词 取向硅钢数值模拟渗氮动力学扩散    
Abstract

Grain-oriented silicon steel (GOSS) is an important functional material used as lamination cores in various transformers. Its magnetic properties are strongly dependent on the sharpness of Goss texture, which is developed during the secondary recrystallization annealing of product. In order to save energy and reduce cut-down operation costs, Nippon steel first lowered the slab-reheating temperature from 1350~1400 ℃ to 1150 ℃ and adopted the nitriding process to form nitride inhibitors before recrysta-llization annealing in 1970s. In this new process, nitriding is the critical process because it controls the size, distribution and volume fraction of nitride precipitates, which then determines the subsequent deve-lopment of Goss texture. Although it is of great importance for good quality control of industrial GOSS product, unfortunately, a quantitative mathematic modeling on nitriding kinetics is still in lack. In this work, nitriding kinetics were both measured experimentally and simulated by modeling. The N contents after various nitriding periods and N concentration gradient across thickness were both measured. It has been found that the N content increases slowly at the beginning of 60 s and then much more rapidly during nitriding. There exists a sharp N concentration gradient within the depth of 0.03 mm to the steel sheet surface, which diminishes after about 0.04 mm depth. With the different assumptions on N-transfer coefficient from gas to the steel matrix, the first mathematic modeling on nitriding kinetics of GOSS has been successfully established and solved numerically. The simulation results suggest that only when the N-transfer coefficient, f, changes with time following the Avrami function, f=A(1-exp(-ktn)), the calculated nitriding kinetics are consistent with the measurements. Such an Avrami-type dependence results from the reduction kinetics of oxide layer on the surface of silicon steel sheet during nitriding, in which both plate-like and spherical oxides were observed at the beginning but most of them became spherical after nitriding.

Key wordsgrain-oriented silicon steel    numerical simulation    nitriding    kinetics    diffusion
收稿日期: 2016-10-18     
图1  750 ℃渗氮时取向硅钢薄带的实测N含量与渗氮时间的关系
图2  渗氮不同时间硅钢薄带厚度方向N浓度梯度的EPMA线扫描结果
图3  冷轧取向硅钢薄带脱碳退火和渗氮后的显微组织及EDS分析结果
图4  界面反应控制的渗氮过程示意图
图5  N传质系数f为常数时计算出的渗氮动力学曲线
图6  f=a/t时计算得到的渗氮动力学曲线
图7  渗氮时f与时间的不同函数关系
图8  根据f=A(1-exp(-ktn))模型计算出的渗氮动力学曲线与实验结果的对比
图9  计算得到的渗氮后硅钢薄带中N浓度梯度与通过EPMA实测得到N浓度梯度的对比
[1] He Z Z, Zhao Y, Luo H W.Electrical Steel [M]. Beijing: Metallurgical Industry Press, 2012: 1
[1] (何忠治, 赵宇, 罗海文. 电工钢[M]. 北京: 冶金工业出版社, 2012: 1)
[2] Ushigami Y, Mizokami Y, Fujikura M, et al. Recent development of low-loss grain-oriented silicon steel [J]. J. Magn. Magn. Mater., 2003, 254-255: 307
[3] Goss N P.Electrical sheet and method and apparatus for its manufacture and test [P]. US Pat, 1965559A, 1934
[4] Li J, Sun Y, Zhao Y.Development of low temperature slab reheating technique for grain-oriented silicon steel[J]. Iron Steel, 2007, 42(10): 72
[4] (李军, 孙颖, 赵宇. 取向硅钢低温铸坯加热技术的研发进展[J]. 钢铁, 2007, 42(10): 72)
[5] Kumano T, Haratani T, Fujii N.Effect of nitriding on grain oriented silicon steel bearing aluminum[J]. ISIJ Int., 2005, 45: 95
[6] Lee S C, Han C H, Woo J S, et al.Hot rolling annealing; cold rolling decarbonization; controlling concentration [P]. US Pat, 6451128, 2002
[7] Takahashi N, Harase J. Recent development of technology of grain oriented silicon steel [J]. Mater. Sci. Forum, 1996,204-206: 143
[8] Kubota T, Fujikura M, Ushigami Y. Recentprogress and future trend on grain-oriented silicon steel [J]. J. Magn. Magn. Mater., 2000, 215-216: 69
[9] Lobanov M L.Nitriding of Fe-3%Si alloy[J]. Steel Trans., 2015, 45: 94
[10] Morawiec A.On abnormal growth of Goss grains in grain-oriented silicon steel[J]. Scr. Mater., 2011, 64: 466
[11] Kumano T, Ohata Y, Fujii N, et al.Effect of nitriding on grain oriented silicon steel bearing aluminum (the second study)[J]. J. Magn. Magn. Mater., 2006, 304: e602
[12] Abbruzzese G, Campopiano A.A general theory of secondary recrystallization in grain oriented Fe-Si: Metallurgical parameters controlling the microstructural evolution[J]. J. Magn. Magn. Mater., 1994, 133: 123
[13] Thermocalc: thermo-calc software TCFE8 steel/Fe-database. Version2015b [EB/OL]. 2015,
[14] Wang R P, Liu J, Mao J H, et al.Influence of nitriding modes and ammonia on nitrogen content of oriented silicon steel[J]. Heat Treat. Met., 2009, 34(10): 69
[14] (王若平, 刘静, 毛炯辉等. 渗氮方式及氨气对取向硅钢氮含量的影响[J]. 金属热处理, 2009, 34(10): 69)
[15] Toda H, Sato K, Komatsubara M.Characterization of internal oxide layers in 3%Si grain-oriented steel by electrochemical methods[J]. J. Mater. Eng. Perform, 1997, 6: 722
[16] Song H J, Yang P, Mao W M.Nitrogen behavior during nitriding treatment of electrical steel[J]. Heat Treat. Met., 2012, 37(1): 38
[16] (宋惠军, 杨平, 毛卫民. 电工钢渗氮的氮行为[J]. 金属热处理, 2012, 37(1): 38)
[17] Yan G C, He C X, Meng L, et al.Structure of surface oxide layer and effect on nitriding of grain-oriented silicon steel[J]. J. Mater. Eng., 2015, 43(12): 89
[17] (严国春, 何承绪, 孟力等. 取向硅钢表面氧化层的结构及其对渗氮的影响[J]. 材料工程, 2015, 43(12): 89)
[18] Jung S, Kwon M S, Park J, et al.A TEM study of oxide layers formed during decarburization annealing of electrical steel[J]. ISIJ Int., 2011, 51: 1163
[19] Guan C, Li J, Tan N, et al.Reduction of oxide scale on hot-rolled steel by hydrogen at low temperature[J]. Int. J. Hydrogen Energy, 2014, 39: 15116
[20] Hudson R M.Nonacidic descaling of hot band——Part II: Reduction of scale by hydrogen or carbon[J]. Met. Finish., 1985, 83(12): 59
[21] Hudson R M.Nonacidic descaling of hot band: Reduction of scale by hydrogen or carbon[J]. Met. Finish., 1985, 83(11): 73
[22] Sproge L, ?gren J.Experimental and theoretical studies of gas consumption in the gas carburizing process[J]. J. Heat Treat., 1988, 6: 9
[23] Hillert M, translated by Lai H Y, Liu G X. Diffusion in Alloys and Thermodynamics [M]. Beijing: Metallurgy Industry Press, 1984: 6
[23] (Hillert M著, 赖和怡, 刘国勋译. 合金扩散和热力学 [M]. 北京: 冶金工业出版社, 1984: 6)
[24] Rozendaal H C F, Mittemeijer E J, Colijn P F, et al. The development of nitrogen concentration profiles on nitriding iron[J]. Metall. Trans., 1983, 14A: 395
[25] Nakada N, Tsuboi K, Onomoto T, et al.Thermodynamics and kinetics of solution nitriding[J]. Calphad, 2014, 47: 168
[26] Pineau A, Kanari N, Gaballah I.Kinetics of reduction of iron oxides by H2: Part I: Low temperature reduction of hematite[J]. Thermochim. Acta, 2006, 447: 89
[27] Liao C C, Hou C K.Effect of nitriding time on secondary recrystallization behaviors and magnetic properties of grain-oriented electrical steel[J]. J. Magn. Magn. Mater., 2010, 322: 434
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[3] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[4] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[5] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[6] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[7] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[8] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[9] 刘路军, 刘政, 刘仁辉, 刘永. Nd90Al10 晶界调控对晶界扩散磁体磁性能和微观结构的影响[J]. 金属学报, 2023, 59(11): 1457-1465.
[10] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[11] 杜宗罡, 徐涛, 李宁, 李文生, 邢钢, 巨璐, 赵利华, 吴华, 田育成. Ni-Ir/Al2O3 负载型催化剂的制备及其用于水合肼分解制氢性能[J]. 金属学报, 2023, 59(10): 1335-1345.
[12] 王海峰, 张志明, 牛云松, 杨延格, 董志宏, 朱圣龙, 于良民, 王福会. 前置渗氧对TC4钛合金低温等离子复合渗层微观结构和耐磨损性能的影响[J]. 金属学报, 2023, 59(10): 1355-1364.
[13] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[14] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.
[15] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.