Please wait a minute...
金属学报  2017, Vol. 53 Issue (6): 726-732    DOI: 10.11900/0412.1961.2016.00402
  本期目录 | 过刊浏览 |
Fe对SmCo基高温永磁体微观结构及矫顽力的影响
巩劭廷,蒋成保,张天丽()
北京航空航天大学材料科学与工程学院 北京100191
Effect of Fe on Microstructure and Coercivity of SmCo-Based Magnets
Shaoting GONG,Chengbao JIANG,Tianli ZHANG()
School of Materials Science and Engineering, Beihang University, Beijing 100191, China
引用本文:

巩劭廷, 蒋成保, 张天丽. Fe对SmCo基高温永磁体微观结构及矫顽力的影响[J]. 金属学报, 2017, 53(6): 726-732.
Shaoting GONG, Chengbao JIANG, Tianli ZHANG. Effect of Fe on Microstructure and Coercivity of SmCo-Based Magnets[J]. Acta Metall Sin, 2017, 53(6): 726-732.

全文: PDF(1989 KB)   HTML
  
摘要: 

制备了在500 ℃下矫顽力为603.99 kA/m,最大磁能积为87.30 kJ/m3的高温磁体。研究发现,在室温下,Fe含量较高的SmCo基磁体矫顽力较大,而高温下Fe含量高的磁体矫顽力较小。对磁体的微观形貌、相组成及磁体胞壁胞内成分进行分析,结果表明,随Fe含量升高,胞尺寸变大,1:5H相含量减少,胞壁相中Cu含量及胞内相中Fe含量升高。Fe和Cu元素在胞壁和胞内两相中含量的改变,导致了室温及高温两相畴壁能差的改变,从而引起了矫顽力的变化。

关键词 SmCo磁体Fe含量矫顽力微观结构    
Abstract

High-temperature permanent magnets have an important application in the aerospace and other high-tech fields, among which 2:17-type SmCo magnets have become the first choice for high-temperature permanent magnets due to the strong magnetic anisotropy and high Curie temperature. Although there are studies on the effect of Fe on the remanence and coercivity, the role that Fe plays on coercivity mechanism of SmCo magnets is still unclear. In this work, Sm(CobalFexCu0.08~0.10Zr0.03~0.033)z (x=0.10~0.16, z=6.90 and 7.40) magnets are prepared and the magnetic properties under different temperatures are investigated. The magnets with an intrinsic coercivity of 603.99 kA/m and a maximum energy product of 87.30 kJ/m3 at 500 ℃ are obtained. It is revealed that at room temperature the coercivity of the magnets increases with increasing Fe content, however, at 500 ℃ the coercivity shows an opposite dependency on Fe content. Moreover, the effect of Fe on coercivity is more obvious at low z value. The phase structure and composition analyses were characterized by XRD and TEM. The results show that with the increase of Fe content, the size of the 2:17R cell phase increases, the volume ratio of cell boundary 1:5H phase decreases, and furthermore, both Fe content in the 2:17R phase and Cu content in the 1:5H phase increase. The variations of Fe and Cu contents in both phases lead to the change of the domain wall energy difference. With the increase of Cu content of 1:5H phase, the domain wall energy of 1:5H phase (γ1:5) drops faster at room temperature, the coercivity is determined by γ2:17-γ1:5, so the coercivity increases with increasing Fe content. While at 500 ℃, due to γ1:5 at its Curie temperature, the coercivity is mainly determined by the domain wall energy of 2:17R phase (γ2:17), which decreases with increasing Fe content. The increase of Fe content at the low z value results in a smaller growth of cell size, which leads to a more significant change in coercivity.

Key wordsSmCo magnet    Fe content    coercivity    microstructure
收稿日期: 2016-09-08     
ZTFLH:     
基金资助:国家自然科学基金项目No.51471016和北京市自然科学基金项目No.2151002
图1  Sm(CobalFexCu0.08~0.10Zr0.03~0.033)z (x=0.16、z=6.90)永磁体在不同温度下的退磁曲线
图2  Sm(CobalFexCu0.08~0.10Zr0.03~0.033)z (x=0.10~0.16、z=6.90和7.40)永磁体矫顽力随温度变化曲线
图3  Sm(CobalFexCu0.08~0.10Zr0.03~0.033)z (x=0.10和0.16、z=6.90和7.40)永磁体样品的XRD谱
Temperature Hcj / (kAm-1) Br / T (BH)m / (kJm-3)
RT 2581.49 0.91 168.39
500 ℃ 603.99 0.70 87.30
表1  Sm(CobalFexCu0.08~0.10Zr0.03~0.033)z (x=0.16、z=6.90)永磁体室温及500 ℃下的永磁性能
图4  Sm(CobalFexCu0.08~0.10Zr0.03~0.033)z (x=0.10和0.16、z=6.90和7.40)永磁体XRD分峰拟合图谱
图5  Sm(CobalFexCu0.08~0.10Zr0.03~0.033)z (x=0.10和0.16、z=6.90和7.40)永磁体的TEM像
图6  Sm(CobalFexCu0.08~0.10Zr0.03~0.033)z (x=0.10和0.16、z=6.90和7.40)永磁体两相成分对比
Atomic fraction Cell length
nm
Cell width
nm
Mass fraction
of 1:5H phase
Volume fraction
of 1:5H phase
x=0.10, z=6.90 82.83 63.69 0.23 0.38
x=0.16, z=6.90 109.96 77.05 0.15 0.29
x=0.10, z=7.40 105.08 85.76 0.15 0.32
x=0.16, z=7.40 185.95 144.46 0.05 0.19
表2  Sm(CobalFexCu0.08~0.10Zr0.03~0.033)z (x=0.10和0.16、z=6.90和7.40)永磁体样品由XRD数据计算所得的1:5H相的质量分数及由TEM像计算所得胞尺寸和1:5H相的体积分数
[1] Gutfleisch O, Müller K H, Khlopkov K, et al.Evolution of magnetic domain structures and coercivity in high-performance SmCo 2: 17-type permanent magnets[J]. Acta Mater., 2006, 54: 997
[2] Gutfleisch O, Willard M A, Brück E, et al.Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient[J]. Adv. Mater., 2011, 23: 821
[3] Horiuchi Y, Hagiwara M, Okamoto K, et al.Effects of solution treated temperature on the structural and magnetic properties of iron-rich Sm(CoFeCuZr)z sintered magnet[J]. IEEE Trans. Magn., 2013, 49: 3221
[4] Zhang T L, Liu H Y, Liu J H, et al.2:17-type SmCo quasi-single-crystal high temperature magnets[J]. Appl. Phys. Lett., 2015, 106: 162403
[5] Wang Q, Jiang C B.Study on SmCo permanent magnets under 350 ℃ moderate temperatures[J]. Acta Metall. Sin., 2011, 47: 1605
[5] (王倩, 蒋成保. 350 ℃中温段SmCo永磁材料的研究[J]. 金属学报, 2011, 47: 1605)
[6] Guo Z H, Li W.Room- and high-temperature magnetic properties of Sm(CobalFexCu0.088Zr0.025)7.5 (x=0~0.30) sintered magnets[J]. Acta Metall. Sin., 2002, 38: 866
[6] (郭朝晖, 李卫. Sm(CobalFexCu0.088Zr0.025)7.5 (x=0~0.30)烧结永磁体的磁性及其高温特性[J]. 金属学报, 2002, 38: 866)
[7] Liu J F, Ding Y, Zhang Y, et al.New rare-earth permanent magnets with an intrinsic coercivity of 10 kOe at 500 ℃[J]. J. Appl. Phys., 1999, 85: 5660
[8] Panagiotopoulos I, Matthias T, Niarchos D, et al. Melt-spun Sm (Co, Fe, Cu, Zr)z magnets for high-temperature applications [J]. J. Magn. Magn. Mater., 2002, 242-245: 1304
[9] Zhang T L, Liu H Y, Ma Z H, et al.Single crystal growth and magnetic properties of 2:17-type SmCo magnets[J]. J. Alloys Compd., 2015, 637: 253
[10] Wang G J, Zheng L, Jiang C B.Magnetic domain structure and temperature dependence of coercivity in Sm (CobalFe0.1Cu0.1Zr0.033)z (z=6.8, 7.4) magnets[J]. J. Magn. Magn. Mater., 2013, 343: 173
[11] Li L Y, Yi J H, Huang B Y, et al.Microstructure and magnetic properties of Sm2Co17-based high temperature permanent magnets[J]. Acta Metall. Sin., 2005, 41: 791
[11] (李丽娅, 易健宏, 黄伯云等. Sm2Co17基高温稀土永磁材料的显微结构与磁性[J]. 金属学报, 2005, 41: 791)
[12] Kronmüller H, Goll D.Micromagnetic analysis of pinning-hardened nanostructured, nanocrystalline Sm2Co17 based alloys[J]. Scr. Mater., 2002, 47: 545
[13] Xiong X Y, Ohkubo T, Koyama T, et al.The microstructure of sintered Sm(Co0.72Fe0.20Cu0.055Zr0.025)7.5 permanent magnet studied by atom probe[J]. Acta Mater., 2004, 52: 737
[14] Liu J F, Zhang Y, Hadjipanayis G C.High-temperature magnetic properties and microstructural analysis of Sm(Co, Fe, Cu, Zr)z permanent magnets[J]. J. Magn. Magn. Mater., 1999, 202: 69
[15] Wang G J, Jiang C B.The coercivity and domain structure of Sm(CobalFe0.1CuxZr0.033)6.9 (x= 0.07, 0.10, 0.13) high temperature permanent magnets[J]. J. Appl. Phys., 2012, 112: 033909
[16] Liu J F, Chui T, Dimitrov D, et al.Abnormal temperature dependence of intrinsic coercivity in Sm(Co, Fe, Cu, Zr)z powder materials[J]. Appl. Phys. Lett., 1998, 73: 3007
[17] Tang W, Zhang Y, Gabay A M, et al. Anomalous temperature dependence of coercivity in rare earth cobalt magnets [J]. J. Magn. Magn. Mater., 2002, 242-245: 1335
[18] Tang W, Zhang Y, Hadjipanayis G C, et al.Influence of Zr and Cu content on the microstructure and coercivity in Sm(CobalFe0.1CuyZrx)8.5 magnets[J]. J. Appl. Phys., 2000, 87: 5308
[19] Chen C H, Walmer M S, Walmer M H.Sm2(Co, Fe, Cu, Zr)17 magnets for use at temperature ? 400 ℃[J]. J. Appl. Phys., 1998, 83: 6706
[20] Guo Z H, Pan W, Li W.Sm(Co, Fe, Cu, Zr)z sintered magnets with a maximum operating temperature of 500 ℃[J]. J. Magn. Magn. Mater., 2006, 303: e396
[21] Liu J F, Ding Y, Hadjipanayis G C.Effect of iron on the high temperature magnetic properties and microstructure of Sm(Co, Fe, Cu, Zr)z permanent magnets[J]. J. Appl. Phys., 1999, 85: 1670
[22] Wang F Z.Modern Methods for Material Analysis [M]. Beijing: Beijing Institute of Technology Press, 2006: 74
[22] (王富耻. 材料现代分析测试方法 [M]. 北京: 北京理工大学出版社, 2006: 74)
[23] Sun T D.A model on the coercivity of the hardened 2-17 rare earth-cobalt permanent magnets[J]. J. Appl. Phys., 1981, 52: 2532
[24] Lectard E, Allibert C H, Ballou R.Saturation magnetization and anisotropy fields in the Sm(Co1-xCux)5 phases[J]. J. Appl. Phys., 1994, 75: 6277
[25] Miyazaki T, Takahashi M, Yang X B, et al.Formation of metastable compounds and magnetic properties in rapidly quenched (Fe1-xCox)5Sm and (Fe1-xCox)7Sm2 alloy systems[J]. J. Appl. Phys., 1988, 64: 5974
[26] Goll D, Kronmüller H, Stadelmaier H H.Micromagnetism and the microstructure of high-temperature permanent magnets[J]. J. Appl. Phys., 2004, 96: 6534
[1] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[2] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[3] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[4] 解磊鹏, 孙文瑶, 陈明辉, 王金龙, 王福会. 制备工艺对FGH4097高温合金微观组织与性能的影响[J]. 金属学报, 2022, 58(8): 992-1002.
[5] 郭璐, 朱乾科, 陈哲, 张克维, 姜勇. Fe76Ga5Ge5B6P7Cu1 合金的非等温晶化动力学[J]. 金属学报, 2022, 58(6): 799-806.
[6] 李金富, 李伟. 铝基非晶合金的结构与非晶形成能力[J]. 金属学报, 2022, 58(4): 457-472.
[7] 张显程, 张勇, 李晓, 王梓萌, 贺琛贇, 陆体文, 王晓坤, 贾云飞, 涂善东. 异构金属材料的设计与制造[J]. 金属学报, 2022, 58(11): 1399-1415.
[8] 马敏静, 屈银虎, 王哲, 王军, 杜丹. Ag-CuO触点材料侵蚀过程的演化动力学及力学性能[J]. 金属学报, 2022, 58(10): 1305-1315.
[9] 刘仲武, 何家毅. 钕铁硼永磁晶界扩散技术和理论发展的几个问题[J]. 金属学报, 2021, 57(9): 1155-1170.
[10] 王洪伟, 何竹风, 贾楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能[J]. 金属学报, 2021, 57(5): 632-640.
[11] 潘杰, 段峰辉. 非晶合金的回春行为[J]. 金属学报, 2021, 57(4): 439-452.
[12] 李宁, 黄信. 块体非晶合金的3D打印成形研究进展[J]. 金属学报, 2021, 57(4): 529-541.
[13] 周丽, 李明, 王全兆, 崔超, 肖伯律, 马宗义. 31%B4Cp/6061Al复合材料的热变形及加工图的研究[J]. 金属学报, 2020, 56(8): 1155-1164.
[14] 刘天, 罗锐, 程晓农, 郑琦, 陈乐利, 王茜. 形成Al2O3表层的奥氏体不锈钢加速蠕变实验研究[J]. 金属学报, 2020, 56(11): 1452-1462.
[15] 李萍, 林泉, 周玉峰, 薛克敏, 吴玉程. W高压扭转显微组织演化过程TEM分析[J]. 金属学报, 2019, 55(4): 521-528.