Please wait a minute...
金属学报  2017, Vol. 53 Issue (6): 657-668    DOI: 10.11900/0412.1961.2016.00403
  本期目录 | 过刊浏览 |
Mn、Ni、Mo含量对K65热煨弯管焊缝组织转变和低温韧性的影响
董利明1,2(),杨莉1,戴军1,张宇2,王学林3,尚成嘉3
1 常熟理工学院汽车工程学院 常熟 215500
2 江苏省(沙钢)钢铁研究院 张家港 215625
3 北京科技大学材料科学与工程学院 北京 100083
Effect of Mn, Ni, Mo Contents on Microstructure Transition and Low Temperature Toughness of Weld Metal for K65 Hot Bending Pipe
Liming DONG1,2(),Li YANG1,Jun DAI1,Yu ZHANG2,Xuelin WANG3,Chengjia SHANG3
1 College of Automotive Engineering, Changshu Institute of Technology, Changshu 215500, China
2 Institute of Research of Iron and Steel, Sha-Steel, Zhangjiagang 215625, China
3 College of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

董利明,杨莉,戴军,张宇,王学林,尚成嘉. Mn、Ni、Mo含量对K65热煨弯管焊缝组织转变和低温韧性的影响[J]. 金属学报, 2017, 53(6): 657-668.
Liming DONG, Li YANG, Jun DAI, Yu ZHANG, Xuelin WANG, Chengjia SHANG. Effect of Mn, Ni, Mo Contents on Microstructure Transition and Low Temperature Toughness of Weld Metal for K65 Hot Bending Pipe[J]. Acta Metall Sin, 2017, 53(6): 657-668.

全文: PDF(15758 KB)   HTML
  
摘要: 

以Mn-Ni-Mo为主要合金体系,研制了K65热煨弯管用高强高韧埋弧焊丝。采用该焊丝制得的直缝管焊缝金属抗拉强度达741~768 MPa,显微硬度为231~250 HV10,-40 ℃冲击功为90~185 J;直缝管焊缝经热处理后,-40 ℃冲击功为65~124 J,比直缝管焊缝出现较大幅度下降。利用OM、LePera、SEM (EBSD)及TEM观察焊缝组织,研究焊缝中Mn、Ni、Mo含量对K65热煨弯管组织转变和低温韧性的影响。结果表明:直缝管焊缝中Mn、Ni含量的增加会促进针状铁素体的形成,适当增加Mo含量,降低Mn、Ni含量能使焊缝达到最佳强韧性能;经过热处理后,焊缝中针状铁素体含量降低,上贝氏体含量增加,大尺寸沿晶分布的渗碳体是焊缝金属低温韧性下降的原因,但Mo含量为0.2%时仍能保证大角度晶界比例达67.1%,使焊缝金属的-40 ℃低温韧性达124 J。

关键词 管线钢埋弧焊丝热煨工艺焊缝金属低温韧性针状铁素体    
Abstract

To increase transport efficiency and to lower the costs of pipeline construction, longitudinally submerged arc welded (LSAW) pipes with larger diameters and thicker walls have been increasingly used by the pipeline industry. For example, in Russia, the LSAW pipeline in the Bovanenkovo-Ukhta project was recently constructed with K65 steel (the highest grade of the Russian natural gas pipeline), which is similar in specifications and yield strength requirement (550 MPa grade) to API X80 but has a stricter low temperature toughness value of 60 J at -40 ℃ (compared to -20 ℃ for API X80 grade) due to the extreme Arctic environment. Although weld metal with acicular ferrite (AF) has been developed to meet the requirement of low temperature toughness, the main objective of the present work was to clarify the microstructural evolution and the resulting changes in mechanical properties after the bending process. Hot bending pipes are necessary links in the construction of pipeline lying, which make more strin gent standards for the strength and low temperature toughness. That puts forward a challenge especially to the weld bead because of the deterioration of toughness during the hot bending process. In this work, submerged arc welding wire with high strength and toughness was developed for K65 hot bending pipes, and the alloying elements of Mn, Ni, Mo were considered to estimate the microstructure evolution and the effect of low temperature toughness for the weld metal. The results showed the low temperature toughness at -40 ℃ reached 90~185 J and 65~124 J for weld metal of straight seam pipe and hot bending pipe respectively, which reflect the excellent role of alloying elements of Mn, Ni, Mo. Microstructure characterization revealed that the weld metal, which originally consisted mainly of AF in the as-deposited condition, became predominantly composed of bainitic ferrite (BF) after hot bending. In addition, the large size cementite along the grain boundary was also the reason for the deterioration of toughness. It is found that reaustenisation caused a small austenite grain-sized matrix, which brought about a very high volume fraction of bainite. However, the low temperature toughness for hot bending pipe was improved to 124 J for the weld metal with 0.2%Mo, in which about 67.1% of high angle grain boundary were found. It is clear that the process of reaustenitisation during the bending process plays an important role in successful microstructural design for the steel weld metals.

Key wordspipe line steel    submerged arc welding wire    hot bending process    weld metal    low temperature toughness    acicular ferrite
收稿日期: 2016-09-08     
图1  弯管热煨弯制备示意图
图2  热弯和回火的热模拟工艺及取样位置
Steel Rp0.5 Rm Z Impact energy / J
MPa MPa % T BM WM
Single Average Single Average
K65 555~665 ≥640 ≥18 -40 ≥150 ≥200 ≥42 ≥ 56
X80 555~690 ≥625 - -10 ≥140 ≥180 ≥80 ≥ 90
表1  K65和X80管线钢的技术要求对比[14]
Bead Wire-1 Wire-2 Wire-3 Wire-4 Welding Heat input
Current Voltage Current Voltage Current Voltage Current Voltage speed (η=0.9)
A V A V A V A V cmmin-1 kJcm-1
Inside 950 33 850 36 750 40 600 42 110 57.5
Outside 1200 33 900 36 800 40 650 40 120 58.5
表2  埋弧焊接工艺参数
图3  焊缝宏观形貌及测试位置示意图
图4  K65管线钢母材显微组织的OM像
No. C Si Mn Ni Mo P S Others Fe
1# 0.063 0.21 1.60 1.19 0.132 0.010 0.0046 0.305 Bal.
2# 0.063 0.21 1.60 1.39 0.127 0.011 0.0050 0.307 Bal.
3# 0.067 0.22 1.81 1.13 0.256 0.011 0.0054 0.301 Bal.
4# 0.068 0.23 1.99 1.17 0.191 0.011 0.0057 0.313 Bal.
表3  焊缝金属化学成分
No. Rp0.5 Rm Z Hardness / HV10
WM WM-QT
MPa MPa %
1# 583 723 21.8 231 230
2# 606 722 23.5 238 240
3# 647 714 22.0 244 253
4# 689 768 21.7 250 259
表4  焊缝金属拉伸性能和不同状态时的显微硬度
图5  焊态和热处理态焊缝的-40 ℃低温冲击功
图6  2#和3#焊缝焊态和热处理态的OM像
图7  3#焊缝金属热处理中间态(淬火态)及实际弯管焊缝的OM像
图8  3#焊态、淬火态和热煨弯管焊缝的原奥氏体晶界的OM像
图9  3#焊态、淬火态、淬火+回火态、热煨弯管焊缝经LePera试剂侵蚀的马氏体/奥氏体(M/A)的OM像
图10  3#焊缝金属不同状态下的M/A体积分数和平均尺寸
图11  3#焊缝热处理前后组织演变的TEM像
图12  3#焊缝焊态和热处理态的EBSD分析
图13  3#焊缝-40 ℃冲击断口形貌SEM像和焊态焊缝中夹杂物的EDS
图14  3#焊缝冲击断口附近的裂纹扩展形貌的OM像
图15  裂纹扩展和偏折示意图
[1] Gao H L.The challenges for pipeline projects & development trend of pipeline steel[J]. Weld. Pipe Tube, 2010, 33(10): 5
[1] (高惠临. 管道工程面临的挑战与管线钢的发展趋势[J]. 焊管, 2010, 33(10): 5)
[2] Stalheim D G.The use of high temperature processing (HTP) for high strength oil and gas transmission pipeline application [A]. Proceedings of the 5th steels Conference[C]. Iron Steel, 2005, 40: 699
[3] Niu J, Liu Y L, Feng Y R, et al.Low temperature embrittlement of X80 steel weld after heat treatment[J]. Hot Work. Technol., 2010, 39(19): 15
[3] (牛靖, 刘迎来, 冯耀荣等. 热处理状态下X80钢焊缝的低温脆化[J]. 热加工工艺, 2010, 39(19): 15)
[4] Keehan E, Karlsson L, Andren H O, et al. New developments with C-Mn-Ni high-strength steel weld metals, Part A——Microstructure [J]. Weld. J., 2006,85: 200.s
[5] Keehan E, Karlsson L, Andrén H O.Influence of carbon, manganese and nickel on microstructure and properties of strong steel weld metals: Part 1——Effect of nickel content[J]. Sci. Technol. Weld. Join., 2006, 11: 1
[6] Keehan E, Karlsson L, Andrén H O, et al.Influence of carbon, manganese and nickel on microstructure and properties of strong steel weld metals: Part 2——Impact toughness gain resulting from manganese reductions[J]. Sci. Technol. Weld. Join., 2006, 11: 9
[7] Bhole S D, Nemade J B, Collins L, et al.Effect of nickel and molybdenum additions on weld metal toughness in a submerged arc welded HSLA line-pipe steel[J]. J. Mater. Process. Technol., 2006, 173: 92
[8] Zhang M, Yao C W, Fu C, et al.Submerged arc welding wire matched with X80 pipeline steel[J]. Trans. China Weld. Inst., 2006, 27(4): 64
[8] (张敏, 姚成武, 付翀等. X80管线钢埋弧焊匹配焊丝研制[J]. 焊接学报, 2006, 27(4): 64)
[9] Pan X, Wang Y B, Zhang Y.Development of submerged arc welding wire for third generation pipeline X90 [A]. The National Metal Products Information Network Twenty-Third Annual Meeting and the 2013 Metal Products Industry Information Technology Symposium[C]. Wuxi: The Chinese Society for Metals, 2013
[9] (潘鑫, 王银柏, 张宇. 第三代管线X90用埋弧焊丝研制 [A]. 全国金属制品信息网第23届年会暨2013金属制品行业技术信息交流会论文集[C]. 无锡: 中国金属学会, 2013)
[10] Bi Z Y, Liu H Z, Jing X T, et al.Research on submerged arc welding wire for X100 pipeline steel[J]. China Weld., 2011, 20(2): 56
[11] Zhang X L, Liu Y L, Feng Y R, et al.Relationship of microstructure and toughness index of reheated high grade pipeline steels[J]. Dev. Appl. Mater., 2008, 23(1): 1
[12] Arai Y, Kondo K, Hirata H, et al.Metallurgical design of newly developed material for seamless pipes of X80-X100 grades [A]. ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering Volume 4: Materials Technology; Ocean Engineering[C]. San Diego, California, USA: ASME, 2007, 37
[13] Wu D Y, Han X L, Tian H T, et al.Microstructural characterization and mechanical properties analysis of weld metals with two Ni contents during post-weld heat treatments[J]. Metall. Mater. Trans., 2015, 46A: 1973
[14] Yang W W, Zhao J, Jiao B, et al.Analysis and comparison of the K65 steel grade standards[J]. Weld. Pipe Tube, 2013, 36(7): 67
[14] (杨玮玮, 赵晶, 焦斌等. K65钢级标准的分析和对比[J]. 焊管, 2013, 36(7): 67)
[15] Qian B N, Guo X M, Li J L, et al.Welding text of X80 high strength pipeline steel[J]. Weld. Join., 2002, (8): 14
[15] (钱百年, 国旭明, 李晶丽等. 高强度管线钢X80的焊接研究[J]. 焊接, 2002, (8): 14)
[16] Wang X L, Dong L M, Yang W W, et al.Effect of Mn, Ni, Mo proportion on micro-structure and mechanical properties of weld metal of K65 pipeline steel[J]. Acta Metall. Sin., 2016, 52: 649
[16] (王学林, 董利明, 杨玮玮等. Mn/Ni/Mo配比对K65管线钢焊缝金属组织与力学性能的影响[J]. 金属学报, 2016, 52: 649)
[17] Abson D J, Pargeter R J.Factors influencing as-deposited strength, microstructure, and toughness of manual metal arc welds suitable for C-Mn steel fabrications[J]. Int. Met. Rev., 1986, 31: 141
[18] Babu S S.The mechanism of acicular ferrite in weld deposits[J]. Curr. Opin. Solid State Mater. Sci., 2004, 8: 267
[19] Li Y, Baker T N.Effect of morphology of martensite-austenite phase on fracture of weld heat affected zone in vanadium and niobium microalloyed steels[J]. Mater. Sci. Technol., 2010, 26: 1029
[20] Thomas G.Retained austenite and tempered martensite embrittlement[J]. Metall. Mater. Trans., 1978, 9A: 439
[21] Hwang B, Kin Y G, Lee S, et al.Effective grain size and charpy impact properties of high-toughness X70 pipeline steels[J]. Metall. Mater. Trans., 2005, 36A: 2107
[22] Padap A K, Chaudhari G P, Pancholi V, et al.Microstructural evolution and mechanical behavior of warm multi-axially forged HSLA steel[J]. J. Mater. Sci., 2012, 47: 7894
[23] Yan W, Zhu L, Sha W, et al.Change of tensile behavior of a high-strength low-alloy steel with tempering temperature[J]. Mater. Sci. Eng., 2009, A517: 369
[24] Edmonds D V, He K, Rizzo F C, et al. Quenching and partitioning martensite——A novel steel heat treatment [J]. Mater. Sci. Eng., 2006, A438-440: 25
[25] Yang J R, Yang C C, Huang C Y.The coexistence of acicular fe-rrite and bainite in an alloy-steel weld metal[J]. J. Mater. Sci. Lett., 1992, 11: 1547
[26] Yang J R, Huang C Y, Huang C F, et al.Influence of acicular fe-rrite and bainite microstructures on toughness for an ultra-low-carbon alloy steel weld metal[J]. J. Mater. Sci. Lett., 1993, 12: 1290
[1] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[2] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[3] 侯旭儒, 赵琳, 任淑彬, 彭云, 马成勇, 田志凌. 热输入对电弧增材制造船用高强钢组织与力学性能的影响[J]. 金属学报, 2023, 59(10): 1311-1323.
[4] 周成, 赵坦, 叶其斌, 田勇, 王昭东, 高秀华. 回火温度对1000 MPaNiCrMoV低碳合金钢微观组织和低温韧性的影响[J]. 金属学报, 2022, 58(12): 1557-1569.
[5] 李学达, 李春雨, 曹宁, 林学强, 孙建波. 高强管线钢焊接临界再热粗晶区中逆转奥氏体的逆相变晶体学[J]. 金属学报, 2021, 57(8): 967-976.
[6] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[7] 陈芳,李亚东,杨剑,唐晓,李焰. X80钢焊接接头在模拟天然气凝析液中的腐蚀行为[J]. 金属学报, 2020, 56(2): 137-147.
[8] 李亚东,李强,唐晓,李焰. X80管线钢焊接接头的模拟重构及电偶腐蚀行为表征[J]. 金属学报, 2019, 55(6): 801-810.
[9] 张体明, 赵卫民, 蒋伟, 王永霖, 杨敏. X80钢焊接残余应力耦合接头组织不均匀下氢扩散的数值模拟[J]. 金属学报, 2019, 55(2): 258-266.
[10] 马歌, 左秀荣, 洪良, 姬颖伦, 董俊媛, 王慧慧. 深海用X70管线钢焊接接头腐蚀行为研究[J]. 金属学报, 2018, 54(4): 527-536.
[11] 舒韵, 闫茂成, 魏英华, 刘福春, 韩恩厚, 柯伟. X80管线钢表面SRB生物膜特征及腐蚀行为[J]. 金属学报, 2018, 54(10): 1408-1416.
[12] 史显波, 严伟, 王威, 单以银, 杨柯. 新型含Cu管线钢的抗氢致开裂性能[J]. 金属学报, 2018, 54(10): 1343-1349.
[13] 王猛, 刘振宇, 李成刚. 轧后超快冷及亚温淬火对5%Ni钢微观组织与低温韧性的影响机理[J]. 金属学报, 2017, 53(8): 947-956.
[14] 万红霞,宋东东,刘智勇,杜翠薇,李晓刚. 交流电对X80钢在近中性环境中腐蚀行为的影响[J]. 金属学报, 2017, 53(5): 575-582.
[15] 黄龙,邓想涛,刘佳,王昭东. 0.12C-3.0Mn低碳中锰钢中残余奥氏体稳定性与低温韧性的关系[J]. 金属学报, 2017, 53(3): 316-324.