Please wait a minute...
金属学报  2017, Vol. 53 Issue (6): 641-647    DOI: 10.11900/0412.1961.2016.00415
  本期目录 | 过刊浏览 |
冷却速率对急冷Fe-Al-Nb三元合金凝固组织形成的影响
谷倩倩,阮莹(),朱海哲,闫娜
西北工业大学应用物理系 西安 710072
Influence of Cooling Rate on Microstructural Formation of Melt-Spun Fe-Al-Nb Ternary Alloy
Qianqian GU,Ying RUAN(),Haizhe ZHU,Na YAN
Department of Applied Physics, Northwestern Polytechnical University, Xi'an 710072, China
引用本文:

谷倩倩, 阮莹, 朱海哲, 闫娜. 冷却速率对急冷Fe-Al-Nb三元合金凝固组织形成的影响[J]. 金属学报, 2017, 53(6): 641-647.
Qianqian GU, Ying RUAN, Haizhe ZHU, Na YAN. Influence of Cooling Rate on Microstructural Formation of Melt-Spun Fe-Al-Nb Ternary Alloy[J]. Acta Metall Sin, 2017, 53(6): 641-647.

全文: PDF(4838 KB)   HTML
  
摘要: 

采用单辊急冷技术研究了Fe67.5Al22.8Nb9.7三元合金的快速凝固和组织形成规律。

当辊速从10 m/s增大到40 m/s时,合金条带厚度减少1个数量级,冷速增加了7倍;辊速为40 m/s时样品形状除规则条带外还出现了鱼骨状条带和球状液滴。合金显微组织由Nb(Fe, Al)2α-Fe组成,随着辊速增大,凝固组织特征发生变化并且显著细化。随着辊速的增大,合金条带近自由面凝固组织则由初生α-Fe相和层片共晶向碎断层片共晶转变,近辊面凝固组织始终由不规则共晶组成。辊速达到40 m/s时,规则条带完全由不规则共晶组成;合金液滴由于获得的冷速相对较低,其凝固组织主要由初生α-Fe相和层片共晶组成,且随着液滴直径的减小初生相由树枝晶向等轴晶转变。

关键词 Fe-Al-Nb三元合金快速凝固显微组织冷却速率共晶    
Abstract

Fe-Al-Nb ternary alloys as a sort of high-temperature structure materials are paid more attention in recent years. The pseudobinary eutectic composed of Nb(Fe, Al)2 and α-Fe phases in Fe-Al-Nb alloy transformed from lamellar shape to fiber with the increase of growth rate in directional solidification. Heat treatment techniques were applied to investigate the strengthening mechanism related to microstructural formation. However, influence of cooling rate on microstructure especially pseudobinary eutectic is not clear yet. In this work, rapid solidification and the microstructural formation of Fe67.5Al22.8Nb9.7 ternary alloy were investigated by melt spinning technique to reveal the rapid solidification mechanism of the alloy. As the wheel rate increases from 10 m/s to 40 m/s, the thickness of alloy ribbon decrease by one order of magnitude, i.e. from 67.70 μm to 4.69 μm, the cooling rate increases by seven times, i.e. from 1.24×106 K/s to 9.53×106 K/s. Consequently, the sample shape transforms from regular ribbon to regular ribbon, fishbone-like ribbon and droplets. The microstructure consists of Nb(Fe, Al)2 and α-Fe phases. The rise of wheel rate leaded to the microstructural transition and refinement, as well as the refinement in terms of eutectic interlamellar spacing and grain size (i.e. grain diameter) measured using Image-Pro Plus software. On condition that the wheel rate is less than 40 m/s, the ribbon microstructural characteristics are divided into two regions, i.e. primary α-Fe phase plus lamellar pseudobinary eutectic near free surface region and anomalous pseudobinary eutectic near roller surface region. As the wheel rate increases from 10 m/s to 30 m/s, lamellar eutectic becomes fragmented and the amount of anomalous pseudobinary eutectic enlarges. Once the wheel rate is up to 40 m/s, anomalous pseudobinary eutectic is the only microstructure of the fishbone-like ribbon. Meanwhile, the alloy droplets with the diameter size ranging from 90 μm to 1500 μm were achieved at the wheel rate of 40 m/s. Owing to the relative low cooling rate, the microstructure of the alloy droplet consist of primary α-Fe phase and lamellar pseudobinary eutectic. As the droplet diameter decreases, the primary α-Fe phase transforms from dendrite to equiaxed grain and the pseudobinary lamellar eutectic is refined.

Key wordsFe-Al-Nb ternary alloy    rapid solidification    microstructure    cooling rate    eutectic
收稿日期: 2016-09-14     
基金资助:国家自然科学基金项目Nos.51327901、U1660108、51301138,航空科学基金项目No.2014ZF53069,陕西省科学技术研究发展计划工业科技攻关项目No.2016GY-247和西北工业大学基础研究基金项目No.3102015ZY077
图1  Fe67.5Al22.8Nb9.7三元合金常规凝固样品的XRD谱
图2  合金条带厚度与辊速的关系
图3  不同辊速下Fe67.5Al22.8Nb9.7合金熔体温度随时间的变化和冷却曲线
图4  不同辊速下Fe67.5Al22.8Nb9.7合金条带凝固组织的SEM像
Vr / (ms-1) fd / % λ / μm
10 18 0.341
20 32 0.178
30 47 0.121
40 100
表1  不同辊速下凝固组织特征参数
图5  Vr=40 m/s时形成的Fe67.5Al22.8Nb9.7合金鱼骨状条带和颗粒
图6  Vr=40 m/s时不同尺寸Fe67.5Al22.8Nb9.7合金液滴凝固组织的SEM像
图7  Fe67.5Al22.8Nb9.7合金液滴中共晶层片间距与粒径的关系
[1] Galenko P K, Abramova E V, Jou D, et al.Solute trapping in rapid solidification of a binary dilute system: A phase-field study[J]. Phys. Rev., 2011, 84E: 041143
[2] Kim Y W.Microstructures and mechanical properties of rapidly solidified Mg-Al-Zn-MM alloys[J]. J. Mater. Sci. Technol., 2008, 24: 89
[3] Arai Y, Emi T, Fredriksson H, et al.In-situ observed dynamics of peritectic solidification and δ/γ transformation of Fe-3 to 5 At. pct Ni alloys[J]. Metall. Mater. Trans., 2005, 36A: 3065
[4] Ruan Y, Wang X J, Chang S Y.Two hardening mechanisms in high-level undercooled Al-Cu-Ge alloys[J]. Acta Mater., 2015, 91: 183
[5] Liu N, Liu F, Chen Z, et al.Liquid-phase separation in rapid solidification of undercooled Fe-Co-Cu melts[J]. J. Mater. Sci. Technol., 2012, 28: 622
[6] Wang H P, Chang J, Wei B.Measurement and calculation of surface tension for undercooled liquid nickel and its alloy[J]. J. Appl. Phys., 2009, 106: 033506
[7] Liu Z G, Chai L H, Chen Y Y, et al.Development of rapidly solidified titanium aluminide compounds[J]. Acta Metall. Sin., 2008, 44: 569
[7] (刘志光, 柴丽华, 陈玉勇等. 快速凝固TiAl化合物的研究进展[J]. 金属学报, 2008, 44: 569)
[8] Clopet C R, Cochrane R F, Mullis A M.Spasmodic growth during the rapid solidification of undercooled Ag-Cu eutectic melts[J]. Appl. Phys. Lett., 2013, 102: 031906
[9] Li H, Liang Y F, He R Q, et al.Ordered structure and mechanical properties of Fe-6.5%Si alloy fabricated by rapid quenching[J]. Acta Metall. Sin., 2013, 49: 1452
[9] (李慧, 梁永锋, 贺睿琦等. 快速凝固Fe-6.5%Si合金有序结构及力学性能研究[J]. 金属学报, 2013, 49: 1452)
[10] Huang Q S, Liu L, Wei X X, et al.Solidification behaviors of undercooled Ni-P alloys[J]. Acta Phys. Sin., 2012, 61: 166401
[10] (黄起森, 刘礼, 韦修勋等. 过冷Ni-P合金的凝固行为[J]. 物理学报, 2012, 61: 166401)
[11] Su J H, Ren F Z, Tian B H, et al.Aging strengthening in rapidly solidified Cu-Cr-Sn-Zn alloy[J]. J. Mater. Sci. Technol., 2009, 25: 230
[12] Ruan Y, Wei B B.Rapid solidification of undercooled Al-Cu-Si eutectic alloys[J]. Chin. Sci. Bull., 2008, 53: 2716
[12] (阮莹, 魏炳波. 三元Al-Cu-Si共晶合金的深过冷与快速凝固[J]. 科学通报, 2008, 53: 2716
[13] Zhang M, Zhang L L, Pang S J, et al.Research and application of rapid-solidified Mg-Zn binary ribbons in landfill leachate treatment[J]. J. Alloys Compd., 2014, 615(Suppl.1): S595
[14] Wu W, Liu J H, Jiang C B, et al.Giant magnetostriction in Tb-doped Fe83Ga17 melt-spun ribbons[J]. Appl. Phys. Lett., 2013, 103: 262403
[15] Milenkovic S, Palm M.Microstructure and mechanical properties of directionally solidified Fe-Al-Nb eutectic[J]. Intermetallics, 2008, 16: 1212
[16] Mota M A, Coelho A A, Bejarano J M Z, et al. Fe-Al-Nb phase diagram investigation and directional growth of the (Fe, Al)2Nb-(Fe, Al, Nb)ss eutectic system[J]. J. Alloys Compd., 2005, 399: 196
[17] Mota M A, Coelho A A, Bejarano J M Z, et al. Directional growth and characterization of Fe-Al-Nb eutectic alloys [J]. J. Cryst. Growth, 1999, 198-199: 850
[18] Park J M, Kim K B, Kim W T, et al.High strength ultrafine eutectic Fe-Nb-Al composites with enhanced plasticity[J]. Intermetallics, 2008, 16: 642
[19] Morris D G, Requejo L M, Mu?oz-Morris M A. Age hardening in some Fe-Al-Nb alloys[J]. Scr. Mater., 2006, 54: 393
[20] Morris D G, Mu?oz-Morris M A, Requejo L M, et al. Strengthening at high temperatures by precipitates in Fe-Al-Nb alloys[J]. Intermetallics, 2006, 14: 1204
[21] Prymak O, Stein F.Solidification and high-temperature phase equilibria in the Fe-Al-rich part of the Fe-Al-Nb system[J]. Intermeta-llics, 2010, 18: 1322
[22] Stein F, Schneider A, Frommeyer G.Flow stress anomaly and order-disorder transitions in Fe3Al-based Fe-Al-Ti-X alloys with X=V, Cr, Nb, or Mo[J]. Intermetallics, 2003, 11: 71
[23] Morris D G, Mu?oz-Morris M A, Baudin C. The high-temperature strength of some Fe3Al alloys[J]. Acta Mater., 2004, 52: 2827
[24] Yang H Q, Yao Z J, Luo X X, et al.Effect of Nb addition on structure and mechanical properties of FeAl coating[J]. Surf. Coat. Technol., 2015, 270: 221
[25] Morris D G, Mu?oz-Morris M A, Baudin C. The high-temperature strength of some Fe3Al alloys[J]. Acta Mater., 2004, 52: 2827
[26] Morris D G, Requejo L M, Mu?oz-Morris M A. A study of precipitation in DO3 ordered Fe-Al-Nb alloy[J]. Intermetallics, 2005, 13: 862
[27] Drensler S, Mardare C C, Milenkovic S, et al.Selective dissolution in AlFeNb alloys[J]. Phys. Status Solidi, 2012, 209A: 854
[28] Stein F, He C, Prymak O, et al.Phase equilibria in the Fe-Al-Nb system: Solidification behaviour, liquidus surface and isothermal sections[J]. Intermetallics, 2015, 59: 43
[29] Ruan Y, Gu Q Q, Lü P, et al.Rapid eutectic growth and applied performances of Fe-Al-Nb alloy solidified under electromagnetic levitation condition[J]. Mater. Des., 2016, 112: 239
[30] Xu J F, Wei B B.Liquid phase flow and microstructure formation during rapid solidification[J]. Acta Phys. Sin., 2004, 53: 1909
[30] (徐锦锋, 魏炳波. 急冷快速凝固过程中液相流动与组织形成的相关规律[J]. 物理学报, 2004, 53: 1909)
[31] Tkatch V I, Denisenko S N, Beloshov O N.Direct measurements of the cooling rates in the single roller rapid solidification technique[J]. Acta Mater., 1997, 45: 2821
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[4] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[5] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[6] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[7] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[8] 苗军伟, 王明亮, 张爱军, 卢一平, 王同敏, 李廷举. AlCr1.3TiNi2 共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59(2): 267-276.
[9] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[10] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[11] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[12] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[13] 张丽丽, 吉宗威, 赵九洲, 何杰, 江鸿翔. 亚共晶Al-Si合金中微量元素La变质共晶Si的关键影响因素[J]. 金属学报, 2023, 59(11): 1541-1546.
[14] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[15] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.