Please wait a minute...
金属学报  2017, Vol. 53 Issue (2): 201-210    DOI: 10.11900/0412.1961.2016.00119
  本期目录 | 过刊浏览 |
热处理对钛合金表面激光原位合成高铌Ti-Al金属间化合物涂层高温抗氧化行为的影响
刘洪喜(),李正学,张晓伟,谭军,蒋业华
昆明理工大学材料科学与工程学院 昆明 650093
Effect of Heat Treatment on High-Temperature Oxidation Resistance of High Niobium Ti-Al Intermetallic Coating Fabricated by Laser In Situ Synthesis on Titanium Alloy
Hongxi LIU(),Zhengxue LI,Xiaowei ZHANG,Jun TAN,Yehua JIANG
School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
引用本文:

刘洪喜,李正学,张晓伟,谭军,蒋业华. 热处理对钛合金表面激光原位合成高铌Ti-Al金属间化合物涂层高温抗氧化行为的影响[J]. 金属学报, 2017, 53(2): 201-210.
Hongxi LIU, Zhengxue LI, Xiaowei ZHANG, Jun TAN, Yehua JIANG. Effect of Heat Treatment on High-Temperature Oxidation Resistance of High Niobium Ti-Al Intermetallic Coating Fabricated by Laser In Situ Synthesis on Titanium Alloy[J]. Acta Metall Sin, 2017, 53(2): 201-210.

全文: PDF(7254 KB)   HTML
  
摘要: 

采用激光原位合成技术在BT3-1钛合金表面制备了高铌Ti-Al金属间化合物复合涂层。根据XRD谱分析涂层的物相结构,通过GSL-1600X型管式炉测试950 ℃循环氧化条件下热处理前后基材和涂层单位面积的氧化增重,绘制氧化动力学曲线,并据此比较涂层和基材的抗氧化性能。借助OM和SEM观察了氧化前后涂层的微观形貌,探讨了其高温抗氧化机理。结果表明,热处理前的涂层主要由单质Nb、金属间化合物γ-TiAl、α2-Ti3Al和Ti3Al2等物相组成,热处理后的涂层,单质Nb固溶到γ-TiAl和α2-Ti3Al中,同时形成了新相Ti3AlNb0.3,涂层近似为γ-TiAl+α2-Ti3Al双相组织。热处理前涂层的氧化动力学曲线介于线性规律和抛物线规律之间,其高温抗氧化性能比钛合金基材提高了2倍。热处理后涂层的氧化动力学曲线近似呈抛物线规律,且氧化速率小,其高温抗氧化性能比钛合金基材提高了20倍以上。950 ℃循环氧化条件下,涂层氧化层表面形成了连续致密的胶囊状氧化物,氧化层紧密粘附在未氧化涂层部分,氧化层对涂层起到了良好保护作用,而钛合金基材表面则形成疏松多孔的絮状氧化物,氧化层从基材处碎裂、剥落。Nb的合金化显著改善了Ti-Al金属间化合物的高温抗氧化性能。

关键词 钛合金激光原位合成Ti-Al金属间化合物热处理高温抗氧化行为    
Abstract

Titanium alloys are widely used as structural material in aerospace, automobile, biomedical and other fields because of its low density, high specific strength, good corrosion resistance and good biocompatibility. But high coefficient of friction, poor wear resistance and high-temperature oxidation resistance are the main reasons for limiting the use of titanium alloy in complex working conditions. In order to improve the high-temperature oxidation resistance and optimize the microstructure of titanium alloy, high Nb content Ti-Al intermetallic composite coating was fabricated by laser in situ synthesis technique on BT3-1 titanium alloy surface. Phase structure of the composite coating was analyzed according to XRD spectra. Unit area oxidation weight gain of the titanium alloy substrate and coating before and after heat treatment were tested by GSL-1600X tube furnace under 950 ℃. The oxidation kinetics curves were drawn and the high temperature oxidation resistance was compared. The microstructures of coating before and after oxidation were observed by OM and SEM, and the high-temperature oxidation resistance mechanism was analyzed. The results show that the coating mainly consists of Nb, intermetallic γ-TiAl, α2-Ti3Al and Ti3Al2 phases before heat treatment. But after heat treatment, Nb is dissolved in γ-TiAl and α2-Ti3Al, and a new phase Ti3AlNb0.3 is generated in the coating. The coating is approximately γ-TiAl+α2-Ti3Al duplex structure. The oxidation kinetics curves of coating is between linear and parabolic rule before heat treatment, its high temperature oxidation resistance increased by 2 times of titanium alloy substrate. The oxidation kinetics curves of coating is approximately parabolic law after heat treatment, and the rate of oxidation is small, its high temperature oxidation resistance increased more than 20 times of titanium alloy substrate. Under 950 ℃ cyclic oxidation conditions, the oxide layer surface of coating forms a continuous dense capsule oxide, and oxide layer closely connect the unoxidized coating portion, the oxide layer plays a good protective role of the composite coating. But for titanium alloy substrate, the oxide layer surface is loose and porous oxide, the oxide layer is fractured and removed from the substrate surface. Nb alloying significantly improves the high temperature oxidation resistance of Ti-Al intermetallic coating.

Key wordstitanium alloy    laser in situ synthesis    Ti-Al intermetallic    heat treatment    high-temperature oxidation resistance
收稿日期: 2016-04-06     
基金资助:国家自然科学基金项目Nos.61368003和11674134、云南省应用基础研究计划重点项目No.2016FA020及云南省中青年学术技术带头人后备人才资助项目No.2014HB007
图1  钛合金基材和复合涂层的热处理工艺曲线
图2  激光原位合成Ti-Al-Nb涂层的XRD谱
Sample Reaction rate constant k Index n
A0 0.67804 0.93053
A01 0.64571 0.95832
A1 0.62029 0.81949
A11 0.24686 0.47257
表1  钛合金基材和复合涂层试样在950 ℃循环氧化条件下的动力学曲线参数
图3  钛合金基材和复合涂层试样在950 ℃循环氧化条件下的氧化动力学曲线
图4  热处理前后BT3-1钛合金基材表面950 ℃循环氧化的横截面组织的OM像
图5  A1试样经950 ℃循环氧化后表面和界面氧化层横截面显微组织的SEM像
图6  A11试样经950 ℃循环氧化后的横截面显微组织的SEM像
图7  热处理前后钛合金基材和复合涂层经950 ℃循环氧化后氧化层的XRD谱
图8  热处理前后BT3-1钛合金表面氧化层的SEM像
图9  复合涂层热处理前后的氧化层表面形貌的SEM像
Position O Al Ti Mo Cr Si C Nb
Point 1 in Fig.8a 61.21 3.18 31.14 2.08 1.95 0.43 - -
Point 2 in Fig.8a 56.17 13.11 27.74 1.38 1.13 0.47 - -
Point 3 in Fig.9a 18.68 - 0.19 - - - 81.13 -
Point 4 in Fig.9a 58.04 22.27 18.42 - - - - 1.27
Point 5 in Fig.9a 63.49 1.71 2.13 - - - - 32.67
Point 6 in Fig.9a 38.78 - 0.06 - - - 61.16 -
Point 7 in Fig.9a 54.83 1.38 2.23 - - - - 41.56
Point 8 in Fig.9a 66.85 28.83 3.48 - - - - 0.84
Point 9 in Fig.9a 17.62 0.53 0.16 - - - 81.69 -
Point 10 in Fig.9b 65.68 19.89 12.41 - - - - 2.02
表2  热处理前后BT3-1钛合金和复合涂层氧化层中不同位置处的EDS分析结果
图10  Ti、Al、Nb的氧化物Gibbs自由能随温度变化曲线
[1] Das B, Roy S, Rai R N, et al.Development of an in-situ synthesized multi-component reinforced Al-4.5%Cu-TiC metal matrix composite by FAS technique——Optimization of process parameters[J]. Eng. Sci. Technol., Int. J., 2016, 19: 279
[2] Chen H, Zhou H M, Zou Y.Synthesis of ultrafine crystal/nanocrystalline TiAl-based alloy by in situ sintering[J]. Rare Met. Mater. Eng., 2015, 44: 2387
[3] Meng J S, Ji Z S.Microstructure and technology research of in-situ synthesis TiN-TiB2/Ni composite coating by argon arc cladding[J]. Phys. Procedia, 2013, 50: 253
[4] Liu K, Li Y J, Wang J, et al.Effect of high dilution on the in situ synthesis of Ni-Zr/Zr-Si(B, C) reinforced composite coating on zirconium alloy substrate by laser cladding[J]. Mater. Des., 2015, 87: 66
[5] Liu H X, Zhang X W, Jiang Y H, et al.Microstructure and high temperature oxidation resistance of in-situ synthesized TiN/Ti3Al intermetallic composite coatings on Ti6Al4V alloy by laser cladding process[J]. J. Alloys Compd., 2016, 670: 268
[6] Fu Y, Zhang X C, Sui J F, et al.Microstructure and wear resistance of one-step in-situ synthesized TiN/Al composite coatings on Ti6Al4V alloy by a laser nitriding process[J]. Opt. Laser Technol., 2015, 67: 78
[7] Weng F, Chen C Z, Yu H J, et al.Research status of laser cladding on titanium and its alloys: A review[J]. Mater. Des., 2014, 58: 412
[8] Wang Y, Yu H J, Chen C Z, et al.Review of the biocompatibility of micro-arc oxidation coated titanium alloys[J]. Mater. Des., 2015, 85: 640
[9] Zhang Q, Chen J, Tan H, et al.Influence of solution treatment on microstructure evolution of TC21 titanium alloy with near equiaxed β grains fabricated by laser additive manufacture[J]. J. Alloys Compd., 2016, 666: 380
[10] Hounkpati V, Fréour S, Gloaguen D, et al.In situ neutron measurements and modelling of the intergranular strains in the near-β titanium alloy Ti-β21S[J]. Acta Mater., 2016, 109: 341
[11] Riedl H, Koller C M, Munnik F, et al.Influence of oxygen impurities on growth morphology, structure and mechanical properties of Ti-Al-N thin films[J]. Thin Solid Films, 2016, 603: 39
[12] Cui H Z, Ma L, Cao L L, et al.Effect of NiAl content on phases and microstructures of TiC-TiB2-NiAl composites fabricated by reaction synthesis[J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 346
[13] Sina H, Surreddi K B, Iyengar S.Phase evolution during the reactive sintering of ternary Al-Ni-Ti powder compacts[J]. J. Alloys Compd., 2016, 661: 294
[14] Chen L, Yang Y, Wu M J, et al.Correlation between arc evaporation of Ti-Al-N coatings and corresponding Ti0.50Al0.50 target types[J]. Surf. Coat. Technol., 2015, 275: 309
[15] Wang T T, Wang C S, Sun W, et al.Microstructure evolution and mechanical properties of GH984G alloy with different Ti/Al ratios during long-term thermal exposure[J]. Mater. Des., 2014, 62: 225
[16] Sun Y B, Vajpai S K, Ameyama K, et al.Fabrication of multilayered Ti-Al intermetallics by spark plasma sintering[J]. J. Alloys Compd., 2014, 585: 734
[17] Shi Z W, Wei H, Zhang H Y, et al.Nanotwinned Ti(O, C) induced by oriented attachment in a hot-pressed Nb-Ti-Al alloy[J]. Acta Mater., 2016, 105: 114
[18] Shi Z W, Wei H, Zhang H Y, et al.Investigation of a hot-pressed Nb-Ti-Al alloy: Mechanical alloying, microstructure and mechanical property[J]. Mater. Sci. Eng., 2016, A651: 869
[19] Farooq M U, Khalid F A, Zaigham H, et al.Superelastic behaviour of Ti-Nb-Al ternary shape memory alloys for biomedical applications[J]. Mater. Lett., 2014, 121: 58
[20] Kenel C, Leinenbach C.Influence of Nb and Mo on microstructure formation of rapidly solidified ternary Ti-Al-(Nb, Mo) alloys[J]. Intermetallics, 2016, 69: 82
[21] Ding X F.Effect of microstructures on mechanical properties for Ti-Al-Nb ternary alloys [D].[D] Dalian: Dalian University of Technology, 2005
[21] (丁晓菲. Ti-Al-Nb三元系中的合金组织对性能的影响 [D][D]. 大连: 大连理工大学, 2005)
[22] Witusiewicz V T, Bondar A A, Hecht U, et al.The Al-B-Nb-Ti system: IV. Experimental study and thermodynamic re-evaluation of the binary Al-Nb and ternary Al-Nb-Ti systems[J]. J. Alloys Compd., 2009, 472: 133
[23] Shen Y, Ding X F, Wang F G, et al.High-temperature oxidation resistance of high-Nb TiAl-based alloy[J]. J. Chin. Soc. Corros. Protec., 2004, 24: 203
[23] (沈勇, 丁晓非, 王富岗等. 高铌TiAl基合金高温抗氧化性能研究[J]. 中国腐蚀与防护学报, 2004, 24: 203)
[24] Wang X J, Chang H W, Lei M K.Thermodynamic aspects of oxidation for Nb alloying γ-TiAl intermetallic compounds[J]. Acta Metall. Sin., 2001, 37: 810
[24] (王兴军, 常海威, 雷明凯. Nb合金化γ-TiAl的氧化热力学理论分析[J]. 金属学报, 2001, 37: 810)
[25] Burks N,Meyer G H, translated by Zhao G T, Zhao K Q. Introduction to High Temperature Oxidation of Metals [M]. Beijing: Metallurgical Industry Press, 1989: 45
[25] (Burks N, Meyer G H 著, 赵公台, 赵克清译. 金属高温氧化导论 [M]. 北京: 冶金工业出版社, 1989: 45)
[26] Stroosnijder M F, Zheng N, Quadakkers W J, et al.The effect of niobium ion implantation on the oxidation behavior of a γ-TiAl-based intermetallic[J]. Oxid. Met., 1996, 46: 19
[27] Liang Y J, Che Y C.Handbook of Thermodynamic Data of Inorganic Materials [M]. Shenyang: Northeastern University Press, 1993: 17
[27] (梁英教, 车荫昌. 无机物热力学数据手册 [M]. 沈阳: 东北大学出版社, 1993: 17)
[1] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[2] 张滨, 田达, 宋竹满, 张广平. 深潜器耐压壳用钛合金保载疲劳服役可靠性研究进展[J]. 金属学报, 2023, 59(6): 713-726.
[3] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[4] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[5] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[6] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[7] 杨累, 赵帆, 姜磊, 谢建新. 机器学习辅助2000 MPa级弹簧钢成分和热处理工艺开发[J]. 金属学报, 2023, 59(11): 1499-1512.
[8] 王海峰, 张志明, 牛云松, 杨延格, 董志宏, 朱圣龙, 于良民, 王福会. 前置渗氧对TC4钛合金低温等离子复合渗层微观结构和耐磨损性能的影响[J]. 金属学报, 2023, 59(10): 1355-1364.
[9] 陈斐, 邱鹏程, 刘洋, 孙兵兵, 赵海生, 沈强. 原位激光定向能量沉积NiTi形状记忆合金的微观结构和力学性能[J]. 金属学报, 2023, 59(1): 180-190.
[10] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[11] 韩林至, 牟娟, 周永康, 朱正旺, 张海峰. 热处理温度对Ti0.5Zr1.5NbTa0.5Sn0.2 高熵合金组织结构与力学性能的影响[J]. 金属学报, 2022, 58(9): 1159-1168.
[12] 李钊, 江河, 王涛, 付书红, 张勇. GH2909低膨胀高温合金热处理中的组织演变行为[J]. 金属学报, 2022, 58(9): 1179-1188.
[13] 崔振铎, 朱家民, 姜辉, 吴水林, 朱胜利. Ti及钛合金表面改性在生物医用领域的研究进展[J]. 金属学报, 2022, 58(7): 837-856.
[14] 张家榕, 李艳芬, 王光全, 包飞洋, 芮祥, 石全强, 严伟, 单以银, 杨柯. 热处理对一种双峰晶粒结构超低碳9Cr-ODS钢显微组织与力学性能的影响[J]. 金属学报, 2022, 58(5): 623-636.
[15] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.