Please wait a minute...
金属学报  2017, Vol. 53 Issue (1): 123-128    DOI: 10.11900/0412.1961.2016.00274
  本期目录 | 过刊浏览 |
一种第二相析出-温度-时间曲线计算模型的建立
杨永,王昭东(),李天瑞,贾涛,李小琳,王国栋
东北大学轧制技术及连轧自动化国家重点实验室 沈阳 110819
A Model for Precipitation-Temperature-Time Curve Calculation
Yong YANG,Zhaodong WANG(),Tianrui LI,Tao JIA,Xiaolin LI,Guodong WANG
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
引用本文:

杨永,王昭东,李天瑞,贾涛,李小琳,王国栋. 一种第二相析出-温度-时间曲线计算模型的建立[J]. 金属学报, 2017, 53(1): 123-128.
Yong YANG, Zhaodong WANG, Tianrui LI, Tao JIA, Xiaolin LI, Guodong WANG. A Model for Precipitation-Temperature-Time Curve Calculation[J]. Acta Metall Sin, 2017, 53(1): 123-128.

全文: PDF(913 KB)   HTML
摘要: 

基于经典形核长大理论和Johnson-Mehl-Avrami方程,假定过饱和沉淀的球形第二相分子式为Mx1Mv2M1-x-v3CyN1-y,采用平均扩散速率表征合金原子对第二相形核长大过程影响的思想,建立了计算第二相析出-温度-时间(PTT)曲线的模型。基于Adrian模型提出计算多元系全固溶温度的方法,针对Fe-0.09C-0.011Ti-0.03V-0.025Nb (质量分数,%)钢计算得到的铁素体区PTT曲线呈典型的“C”形,得到的最快析出温度为628 ℃,其值与实验结果吻合。本模型计算效率高,计算析出相体积自由能变化时无需求取复合相的溶解度公式;适用性高,适用于不同基体中不同类型析出相PTT曲线的计算。

关键词 微合金钢经典形核长大理论析出相析出-温度-时间(PTT)曲线    
Abstract

Nanometer precipitation is of great importance to the mechanical properties of the low carbon micro-alloyed steel. Precipitation process is controlled by the driving force for precipitation and the diffusion rate of atoms. Under the influence of these two factors, the fastest precipitation temperature for (Mx1Mv2M1-x-v3)(CyN1-y) phase is available, which is also known as nose temperature. The maximum number density of precipitates can be obtained through isothermal treatment at the nose temperature. The most effective tool for getting the value of nose temperature is the precipitation-temperature-time (PTT) curve. Due to that the diffusivity of substitutional atom is several orders of magnitude smaller than that of interstitial atom, the nucleation process and growth process of complex precipitation are controlled by the diffusion of substitutional atoms. So far no model has been established for calculating PTT curve of complex precipitation. All the existing models are established for simple precipitation. In this work, a kinetic model, based on the classical nucleation and growth theories and Johnson-Mehl-Avrami equation, employing Adrian thermodynamic model and L-J model, using average diffusivity to demonstrate the effects of forming elements on precipitation process, has been adapted to describe the precipitation kinetics following high temperature deformation in micro-alloy steels alloying with V, Nb and Ti. Using this model, the PTT curves for the kinetics of second phase were easily obtained. In the experiment, within the temperature range from 660 to 540 ℃, the nose temperature of carbonitride precipitation is equal to or slightly higher than 620 ℃. The value of nose temperature estimated from PTT curve is 628 ℃ which is consistent with the experimental observation. There are enough reasons to believe that the model proposed in this work can estimate accurately the nose temperature information in relatively small experiment case. This model has outstanding advantages in comparison with existing models: the mole fraction of precipitation and the driving force for precipitation per unit volume ?Gv can be calculated directly without calculating the solubility formula of complex carbide in matrix; The proposed model can also be used to calculate the absolute solution temperature and the constituent of initial complex precipitation forming at critical temperature of precipitation, which can be used as the iterative initial values for calculating the equilibrium information between matrix and precipitation at relatively low temperatures.

Key wordsmicro-alloyed steel,    classical nucleation and growth theory,    precipitation,    PTT curve
收稿日期: 2016-07-01     
基金资助:资助项目 国家自然科学基金项目No.51234002
图1  不同温度下析出的热力学平衡信息
图2  复合析出相在铁素体中析出的临界晶核半径、临界形核功及相对沉淀析出时间随温度变化的曲线
[1] Okamoto R, Borgenstam A, [J]. Acta Mater., 2010, 58: 4783
[2] Wang T P, Kao F H, Wang S H, et al.Isothermal treatment influence on nanometer-size carbide precipitation of titanium-bearing low carbon steel[J]. Mater. Lett., 2011, 65: 396
[3] Mao X P, Huo X D, Sun X J, et al.Strengthening mechanisms of a new 700MPa hot rolled Ti-microalloyed steel produced by compact strip production[J]. J. Mater. Process. Technol., 2010, 210: 1660
[4] Xu L, Shi J, Cao W Q, et al.Improved mechanical properties in Ti-bearing martensitic steel by precipitation and grain refinement[J]. J. Mater. Sci., 2011, 46: 6384
[5] Han Y, Shi J, Xu L, et al.Effects of Ti addition and reheating quenching on grain refinement and mechanical properties in low carbon medium manganese martensitic steel[J]. Mater. Des, 2012, 34: 427
[6] Yong Q L, Ma M T, Wu B R.Microalloyed Steel-Physical and Mechanical Metallurgy [M]. Beijing: China Machine Press, 1989: 30
[6] (雍岐龙, 马鸣图, 吴宝榕. 微合金钢-物理和力学冶金 [M]. 北京: 机械工业出版社, 1989: 30)
[7] Enomoto M.Influence of solute drag on the growth of proeutectoid ferrite in Fe-C-Mn alloy[J]. Acta Mater., 1999, 47: 3533
[8] Hutchinson C R, Zurob H S, Sinclair C W, et al.The comparative effectiveness of Nb solute and NbC precipitates at impeding grain-boundary motion in Nb steels[J]. Scr. Mater., 2008, 59: 635
[9] Wang X P, Zhao A M, Zhao Z Z, et al.Mechanical properties and characteristics of nanometer-sized precipitates in hot-rolled low-carbon ferritic steel[J]. Int. J. Miner. Metall. Mater., 2014, 21: 266
[10] Dutta B, Palmiere E J, Sellars C M.Modelling the kinetics of strain induced precipitation in Nb microalloyed steels[J]. Acta Mater., 2001, 49: 785
[11] Maugis P, Gouné M.Kinetics of vanadium carbonitride precipitation in steel: a computer model[J]. Acta Mater., 2005, 53: 3359
[12] Perrard F, Deschamps A, Maugis P.Modelling the precipitation of NbC on dislocations in α-Fe[J]. Acta Mater., 2007, 55: 1255
[13] Perez M, Courtois E, Acevedo D, et al.Precipitation of niobium carbonitrides in ferrite: Chemical composition measurements and thermodynamic modelling[J]. Phil. Mag. Lett., 2007, 87: 645
[14] Perez M, Dumont M, Acevedo-Reyes D.Implementation of classical nucleation and growth theories for precipitation[J]. Acta Mater., 2008, 56: 2119
[15] Yong Q L.Secondary Phase in Steels [M]. Beijing: Metallurgical Industry Press, 2006: 146.
[15] (雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006: 146)
[16] Adrian H.Thermodynamic model for precipitation of carbonitrides in high strength low alloy steels containing up to three microalloying elements with or without additions of aluminium[J]. Mater. Sci. Technol., 1992, 8: 406
[17] Liu W J, Jonas J J.Nucleation kinetics of Ti carbonitride in microalloyed austenite[J]. Metall. Trans., 1989, 20A: 689
[18] Johnson W A, Mehl R F.Reaction kinetics in processes of nucleation and growth[J]. Trans. AIME, 1939, 135: 416
[19] Avrami M.Kinetics of phase change. I General theory[J]. J. Chem. Phys., 1939, 7: 1103
[20] Avrami M.Kinetics of phase change. II Transformation-time relations for random distribution of nuclei[J]. J. Chem. Phys., 1940, 8: 212
[21] Hillert M, Staffansson L I.The regular solution model for stoichiometric phases and ionic melts[J]. Acta Chem. Scand., 1970, 24: 3618
[22] Okaguchi S, Hashimoto T.Computer model for prediction of carbonitride precipitation during hot working in Nb-Ti bearing HSLA steels[J]. ISIJ Int., 1992, 32: 283
[23] Zener C.Theory of growth of spherical precipitates from solid solution[J]. J. Appl. Phys., 1949, 20: 950
[24] Li X L, Wang Z D, Deng X T, et al.Effect of final temperature after ultra-fast cooling on microstructural evolution and precipitation behavior of Nb-V-Ti bearing low alloy steel[J]. Acta Metall. Sin., 2015, 51: 784
[24] (李小琳, 王昭东, 邓想涛等. 超快冷终冷温度对含Nb-V-Ti微合金钢组织转变及析出行为的影响[J]. 金属学报, 2015, 51: 784)
[25] Quispe A, Medina S F, Gómez M, et al.Influence of austenite grain size on recrystallisation-precipitation interaction in a V-microalloyed steel[J]. Mater. Sci. Eng., 2007, A447: 11
[1] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[2] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[3] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[4] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[5] 李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.
[6] 唐帅, 蓝慧芳, 段磊, 金剑锋, 李建平, 刘振宇, 王国栋. 铁素体区等温过程中Ti-Mo-Cu微合金钢中的共析出行为[J]. 金属学报, 2022, 58(3): 355-364.
[7] 陈果, 王新波, 张仁晓, 马成悦, 杨海峰, 周利, 赵运强. 搅拌头转速对2507双相不锈钢搅拌摩擦加工组织及性能的影响[J]. 金属学报, 2021, 57(6): 725-735.
[8] 朱雯婷, 崔君军, 陈振业, 冯阳, 赵阳, 陈礼清. 690 MPa级高强韧低碳微合金建筑结构钢设计及性能[J]. 金属学报, 2021, 57(3): 340-352.
[9] 高一涵, 刘刚, 孙军. 耐热铝基合金研究进展:微观组织设计与析出策略[J]. 金属学报, 2021, 57(2): 129-149.
[10] 刘峰, 王天乐. 基于热力学和动力学协同的析出相模拟[J]. 金属学报, 2021, 57(1): 55-70.
[11] 郭倩颖, 李彦默, 陈斌, 丁然, 余黎明, 刘永长. 高温时效处理对S31042耐热钢组织和蠕变性能的影响[J]. 金属学报, 2021, 57(1): 82-94.
[12] 韩宝帅, 魏立军, 徐严谨, 马晓光, 刘雅菲, 侯红亮. 预变形对超高强Al-Zn-Mg-Cu合金时效组织与力学性能的影响[J]. 金属学报, 2020, 56(7): 1007-1014.
[13] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[14] 刘振宝,梁剑雄,苏杰,王晓辉,孙永庆,王长军,杨志勇. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56(4): 549-557.
[15] 张正延,柴锋,罗小兵,陈刚,杨才福,苏航. 调质态含Cu高强钢的强化机理及钢中Cu的析出行为[J]. 金属学报, 2019, 55(6): 783-791.