Please wait a minute...
金属学报  2016, Vol. 52 Issue (9): 1089-1095    DOI: 10.11900/0412.1961.2015.00655
  论文 本期目录 | 过刊浏览 |
激光选区熔化成形K4202镍基铸造高温合金的组织和性能*
黄文普,喻寒琛,殷杰,王泽敏(),曾晓雁
华中科技大学武汉光电国家实验室, 武汉 430074
MICROSTRUCTURE AND MECHANICAL PROPERTIES OF K4202 CAST NICKEL BASE SUPERALLOY FABRICATED BY SELECTIVE LASER MELTING
Wenpu HUANG,Hanchen YU,Jie YIN,Zemin WANG(),Xiaoyan ZENG
Wuhan National Laboratory of Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
引用本文:

黄文普,喻寒琛,殷杰,王泽敏,曾晓雁. 激光选区熔化成形K4202镍基铸造高温合金的组织和性能*[J]. 金属学报, 2016, 52(9): 1089-1095.
Wenpu HUANG, Hanchen YU, Jie YIN, Zemin WANG, Xiaoyan ZENG. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF K4202 CAST NICKEL BASE SUPERALLOY FABRICATED BY SELECTIVE LASER MELTING[J]. Acta Metall Sin, 2016, 52(9): 1089-1095.

全文: PDF(1355 KB)   HTML
  
摘要: 

针对激光选区熔化(selective laser melting, SLM)制造K4202合金复杂金属零件在航空航天等领域的应用需求, 以K4202合金粉末为材料, 研究了该合金的SLM成形工艺、成形态和热处理后的显微组织和力学性能. 结果表明, K4202合金SLM成形试样显微组织由树枝晶和等轴晶构成, 树枝晶生长方向多与熔池边界近似垂直. 固溶+时效处理后, 由于再结晶的发生, SLM成形所形成的树枝晶结构完全消失, 同时晶界和晶内有金属碳化物析出. 时效处理后的组织与SLM成形态相比, 变化并不明显, 其树枝晶结构保存较完整, 晶界处同样有碳化物析出. SLM成形试样的拉伸性能优于传统铸造方法, 通过固溶+时效处理和时效处理, 试样的屈服强度、抗拉强度均提升显著, 但塑性下降明显, 其中时效处理后的拉伸强度最高.

关键词 K4202合金激光选区熔化成形工艺显微组织力学性能    
Abstract

As a cast nickel base superalloy, K4202 is mainly used in aircraft engines due to its high strengths at elevated temperatures, excellent resistance to hot corrosion and favorable weldability. K4202 alloy is usually fabricated by the conventional casting method and mechanical processing, along with macro-segregation and excessive tool wear. As one of the most promising additive manufacturing technologies, selective laser melting (SLM) is able to manufacture high-performance and complex components. According to the requirement of selective laser melting manufactured metal parts with complex structures in aerospace and other fields, K4202 alloy was used as material for SLM in this research and the forming technology, microstructure and mechanical properties of SLMed and heat-treated samples were studied. The results show that the microstructure of samples formed by SLM is composed of dendrites and isometric crystal. The growing direction of dendrites is nearly perpendicular to melt pool traces in most cases. The dendrite structures disappear completely after solution+ageing heat treatment on account of recrystallization and metal carbide precipitates in grains and at grain boundaries. The precipitates are able to improve the strength of the grain boundary due to the pinning effect. The microstructure has no significant changes after ageing heat treatment, but carbide precipitates at grain boundaries as well. The microhardness of SLM samples is uniform on cross section and vertical section. After solution+ageing and ageing heat treatment, there is a significant improvement on the microhardness. The mechanical properties for as-fabricated samples are superior to those of the cast K4202. Besides, the yield strength and tensile strength increase clearly after heat treatments and the mechanical properties is the highest after ageing heat treatment. This is because of the precipitation of γ' strengthening phases. However, the obvious decrease in the ductility occurs at the same time.

Key wordsK4202 alloy    selective laser melting    forming technology    microstructure    mechanical property
收稿日期: 2015-12-22     
基金资助:* 国家高技术研究发展计划资助项目2013AA031606
图1  拉伸试样示意图
图2  K4202合金粉末形貌的SEM像
图3  K4202合金激光选区熔化(SLM)成形态纵截面和横截面显微组织的OM和SEM像
图4  HT1试样纵截面显微组织的OM和SEM像及EDS分析结果
图5  HT2试样纵截面显微组织的OM和SEM像
图6  不同处理条件下K4202合金试样的XRD谱
图7  不同处理条件下K4202合金试样的显微硬度
图8  不同状态下K4202合金试样的拉伸曲线
表1  不同状态下K4202合金的拉伸性能
[1] Wang J M, Shao C, Zhao M H, Cai Q K.Mod Manuf Eng, 2007; (9): 91
[1] (王建明, 邵冲, 赵明汉, 才庆魁. 现代制造工程, 2007; (9): 91)
[2] Costes J P, Guillet Y, Poulachon G, Dessoly M.Int J Mach Tools Manuf, 2007; 47: 1081
[3] Qi H, Azer M, Ritter A.Metall Mater Trans, 2009; 40A: 2410
[4] Zhang D Y, Niu W, Cao X Y, Liu Z. Mater Sci Eng, 2015; A644: 32
[5] Zhang B J, Zhao G P, Zhang W Y, Huang S, Chen S F.Acta Metall Sin, 2015; 51: 1227
[5] (张北江, 赵光普, 张文云, 黄烁, 陈石富. 金属学报, 2015; 51: 1227)
[6] Tian Z J, Gu D D, Shen L D, Xie D Q, Wang D S.Aeron Manuf Technol, 2015; (11): 38
[6] (田宗军, 顾冬冬, 沈理达, 谢德巧, 王东生. 航空制造技术, 2015; (11): 38)
[7] Chen J L, Dong P, Zhang K, He J W, Liang X K.Electromach Mould, 2014; (1): 66
[7] (陈济轮, 董鹏, 张昆, 何京文, 梁晓康. 电加工与模具, 2014; (1): 66)
[8] Cui C X, Hu B M, Zhao L C.Mater Des, 2011; 32: 1684
[9] Yadroitsev I, Smurov I.Phys Procedia, 2010; 5: 551
[10] Vilaro T.Mater Sci Eng, 2012; A534: 446
[11] Kanagarajah P, Brenne F, Niendorf T.Mater Sci Eng, 2013; A588: 188
[12] Wei K W, Wang Z M, Zeng X Y.Mater Lett, 2015; 156: 187
[13] Zhang H, Zhu H H, Qi T, Hu Z H, Zeng X Y.Mater Sci Eng, 2016; A656: 47
[14] Pauly S, L?ber L, Romy P.Mater Today, 2013; 16: 37
[15] Chlebus E, Gruber K, Ku?nicka B, Kurzac J, Kurzynowski T.Mater Sci Eng, 2015; A638: 647
[16] Shi Y S, Lu Z L, Zhang W X, Huang S H, Chen G Q.Chin Surf Eng, 2006; 19(5+): 150
[16] (史玉升, 鲁中良, 章文献, 黄树槐, 陈国清. 中国表面工程, 2006; 19(5+): 150)
[17] Song B, Dong S J, Coddet P, Liao H L, Coddet C.Mater Des, 2014; 53: 1
[18] Wang Z M, Guan K, Gao M, Li X Y, Chen X F, Zeng X Y.J Alloys Compd, 2012; 513: 518
[19] Mumtaz K A, Hopkinson N.J Mater Process Technol, 2010; 210: 279
[20] Li S, Wei Q S, Shi Y S, Zhu Z C, Zhang D Q.J Mater Sci Technol, 2015; 31: 946
[21] Harrison N J, Todd I, Mumtaz K. Acta Mater, 2015; 94: 59
[22] Bi G J, Sun C N, Chen H C, Ng F L, Ma C C K.Mater Des, 2014; 60: 401
[23] Kunze K, Etter T, Gr?sslin J, Shklover V.Mater Sci Eng, 2015; A620: 213
[24] Rickenbacher L, Etter T, Hovel S.Rapid Prototyping J, 2013; 19: 282
[25] Huang Q Y, Li H K.Superalloy. Beijing: Metallurgical Industry Press, 2000: 6
[25] (黄乾尧, 李汉康. 高温合金. 北京:冶金工业出版社, 2000: 6)
[26] Liu Q C, Elambasseril J, Sun S J, Leary M, Brandt M, Sharp P K. Adv Mater Res, 2014; 891: 1519
[27] Loh L E, Liu Z H, Zhang D Q, Mapar M, Sing S L, Chua C K, Yeong W Y.Virtual Phy Prototyping, 2014; 9: 11
[28] He L Z, Zheng Q, Sun X F, Guan H R, Hu Z Q, Tieu A K, Lu C, Zhu H T.Mater Sci Eng, 2005; A397: 297
[29] Guo J T.Materials Science and Engineering for Superalloys. Beijing: Science Press, 2008: 322
[29] (郭建亭. 高温合金材料学. 北京: 科学出版社, 2008: 322)
[30] Vilaro T, Colin C, Bartout J D, Nazé L, Sennour M.Mater Sci Eng, 2012; A534: 446
[31] Song K, Yu K, Lin X, Chen J, Yang H O, Huang W D.Acta Metall Sin, 2015; 51: 935
[31] (宋衎, 喻凯, 林鑫, 陈静, 杨海欧, 黄卫东. 金属学报, 2015; 51: 935)
[32] Shao C, Li J T, Wu J T, Zhao M H.In: Zhang W ed., Proc 11th China Superalloys Conference, Beijing: Metallurgical Industry Press, 2007: 364
[32] (邵冲, 李俊涛, 吴剑涛, 赵明汉. 见: 张卫主编, 第十一届中国高温合金年会论文集, 北京: 冶金工业出版社, 2007: 364)
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[10] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[14] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[15] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.