Please wait a minute...
金属学报  2016, Vol. 52 Issue (7): 842-850    DOI: 10.11900/0412.1961.2016.00018
  论文 本期目录 | 过刊浏览 |
热等静压参数对Ti-5Al-2.5Sn ELI粉末合金组织与力学性能的影响*
郭瑞鹏1,2,徐磊1(),程文祥3,雷家峰1,杨锐1
1 中国科学院金属研究所, 沈阳 110016。
2 东北大学材料科学与工程学院, 沈阳 110819。
3 宝山钢铁股份有限公司中央研究院, 上海 201900。
EFFECT OF HOT ISOSTATIC PRESSING PARAMETERSON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF POWDER METALLURGY Ti-5Al-2.5Sn ELI ALLOY
Ruipeng GUO1,2,Lei XU1(),Wenxiang CHENG3,Jiafeng LEI1,Rui YANG1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
3 Research Institute, Baoshan Iron & Steel Co., Ltd., Shanghai 201900, China
引用本文:

郭瑞鹏,徐磊,程文祥,雷家峰,杨锐. 热等静压参数对Ti-5Al-2.5Sn ELI粉末合金组织与力学性能的影响*[J]. 金属学报, 2016, 52(7): 842-850.
Ruipeng GUO, Lei XU, Wenxiang CHENG, Jiafeng LEI, Rui YANG. EFFECT OF HOT ISOSTATIC PRESSING PARAMETERSON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF POWDER METALLURGY Ti-5Al-2.5Sn ELI ALLOY[J]. Acta Metall Sin, 2016, 52(7): 842-850.

全文: PDF(857 KB)   HTML
摘要: 

采用无坩埚感应熔炼超声气体雾化法制备Ti-5Al-2.5Sn ELI预合金粉末, 并对预合金粉末进行表征. 研究了热等静压参数对Ti-5Al-2.5Sn ELI粉末合金显微组织和力学性能的影响. 结果表明, 热等静压温度和压力的升高有助于提升粉末合金的致密度, 当粉末合金的致密度大于99.5%时, 粉末合金的力学性能可以达到锻造合金的水平. 综合考虑粉末合金的致密度、显微组织和力学性能, Ti-5Al-2.5Sn ELI预合金粉末优选的热等静压工艺成型窗口为温度890~940 ℃, 压力120 MPa以上, 保温保压3 h. 包套对热等静压压力有屏蔽作用, 设计不当会降低粉末压坯的致密度. 通过优化包套设计、热等静压参数和工艺途径可以有效抑制包套的屏蔽作用, 提升粉末合金的致密度.

关键词 Ti-5Al-2.5Sn ELI粉末冶金热等静压屏蔽效应    
Abstract

Near-net-shape forming through powder metallurgy (PM) route is a cost-efficient approach to produce the hard-to-machining materials such as titanium alloys. Hot isostatic pressing (HIPing) is a common technique to fabricate PM titanium alloys and components. Prealloyed powder metallurgy through HIPing is considered as upgrade of precision casting for titanium alloys. Ti-5Al-2.5Sn ELI (extra-low interstitial) is a typical α-Ti alloy, which is widely used at cryogenic temperature. In this work, the Ti-5Al-2.5Sn ELI prealloyed powder was produced by electrode induction melting gas atomization. Characterization of the prealloyed powder was carried out to understand the following HIPing process. The influence of HIPing parameters on microstructure and mechanical properties of Ti-5Al-2.5Sn ELI powder compact was studied. The results show that the relative density of powder compact increases with the increasing of HIPing temperature and pressure. The mechanical properties of powder compact can achieve those of wrought materials, when the relative density is more than 99.5%. To balance the relative density, microstructure and mechanical properties of the powder compacts, the optimized HIPing parameters for Ti-5Al-2.5Sn ELI powder are temperature in the range of 890~940 oC, pressure above 120 MPa and holding for 3 h. The shielding effect of capsule will hinder the powder densification during HIPing process, which will likely cause non-uniform densification and degrade the relative density of powder compact. However, the shield effect can be weakened through proper tooling design and optimization of the HIPing procedure.

Key wordsTi-5Al-2.5Sn ELI    powder metallurgy    hot isostatic pressing    shielding effect
收稿日期: 2016-01-08     
基金资助:* 国家高技术研究发展计划项目2013AA031606和国家自然科学基金项目U1302272资助
Sample Al Sn Fe Si C O N H Ti
ASTM B348 4.50~5.75 2.00~3.00 <0.25 <0.05 <0.05 <0.12 <0.035 <0.0125 Bal.
Electrode 5.01 2.49 0.06 0.006 0.006 0.076 0.005 0.001 Bal.
Powder 5.14 2.50 0.06 0.006 0.006 0.080 0.006 0.001 Bal.
表1  ASTM B348标准试样、Ti-5Al-2.5Sn ELI合金制粉电极和预合金粉末的化学成分
图1  Ti-5Al-2.5Sn ELI预合金粉末表面形貌的SEM像
图2  Ti-5Al-2.5Sn ELI预合金粉末在不同温度退火后的XRD谱
Process T / ℃ P / MPa t / h ρ / % dmax / μm
HIP-1 800 40 3 93.22 120
HIP-2 800 100 3 99.01 39
HIP-3 800 140 3 99.43 15
HIP-4 890 40 3 96.65 110
HIP-5 890 100 3 99.40 13
HIP-6 890 140 3 99.59 10
HIP-7 940 40 3 98.88 26
HIP-8 940 100 3 99.72 10
HIP-9 940 140 3 99.90 10
表2  不同热等静压制度下Ti-5Al-2.5Sn ELI粉末合金的致密度和最大孔隙尺寸
Process 25 oC -253 oC
σb / MPa σs / MPa δ / % A / (kJm-2) σb / MPa σs / MPa δ / %
HIP-1 611 BF BF 33 BF BF BF
HIP-2 843 752 13.3 213 BF BF BF
HIP-3 860 755 16.2 419 1530 1390 16.3
HIP-4 768 715 7.6 103 1440 1316 5.0
HIP-5 795 722 16.5 600 1460 1340 18.6
HIP-6 844 725 16.5 610 1480 1325 15.2
HIP-7 798 739 14.0 228 1440 1294 16.7
HIP-8 789 737 14.2 700 1433 1309 15.3
HIP-9 805 740 16.5 620 1450 1340 22.3
表3  不同热等静压制度下Ti-5Al-2.5Sn ELI粉末合金的力学性能
图3  不同热等静压制度下Ti-5Al-2.5Sn ELI粉末合金显微组织的OM像
图4  不同热等静压制度下Ti-5Al-2.5Sn ELI粉末合金的孔隙分布
图5  不同热等静压制度下Ti-5Al-2.5Sn ELI粉末合金致密度云图
图6  低碳钢和全致密以及中断Ti-5Al-2.5Sn ELI粉末合金的峰值应力
图7  不同d/r的包套在不同温度下的屏蔽压力
d / mm r / mm d/r ρ / %
1 7.5 0.13 99.90
3 7.5 0.40 99.72
5 7.5 0.67 99.50
7 7.5 0.93 99.20
9 7.5 1.20 98.90
15 7.5 2.00 98.50
3 20.0 0.15 99.90
表4  不同包套参数作用下Ti-5Al-2.5Sn ELI粉末合金的致密度
[1] Boyer R R.Mater Sci Eng, 1996; A213: 103
[2] Williams J C, Starke E A.Acta Mater, 2003; 51: 5775
[3] Guo R P, Xu L, Bai C G, Wu J, Wang Q J, Yang R.Chin J Nonfe-rrous Met, 2014; 24: 2050
[3] (郭瑞鹏, 徐磊, 柏春光, 吴杰, 王清江, 杨锐. 中国有色金属学报, 2014; 24: 2050)
[4] Bolzoni L, Ruiz-Navas E M, Gordo E.Mater Des, 2013; 52: 888
[5] Yuan W X, Mei J, Samarov V, Seliverstov D, Wu X.J Mater Process Technol, 2007; 182: 39
[6] Baccino R, Morret F, Fellerin F, Guichard D, Raisson G.Mater Des, 2000; 21: 345
[7] Froes F H, Mashl S J.JOM, 2004; 56: 46
[8] Atkinson H V, Davies S.Metall Mater Trans, 2000; 31A: 2981
[9] Lee Y T, Schurmann H, Grundhoff K J, Peter M.Int J Powder Metall, 1990; 22: 11
[10] Wu J. Master Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2011
[10] (邬军. 中国科学院金属研究所硕士学位论文, 沈阳, 2011)
[11] Sanchez L, Ouedraogo E, Dellis C, Federzoni L.Powder Metall, 2004; 47: 253
[12] Olevsky E, Maximenko A, Dyck S, Froyen L, Delaey L, Buekenhout L.Int J Solids Struct, 1998; 35: 2283
[13] Nguyen C, Bezold A, Broeckmann C.J Mater Process Technol, 2015; 226: 134
[14] Guo R P, Xu L, Wu J, Yang R, Zong B Y.Mater Sci Eng, 2015; A639: 327
[15] Zhang K, Mei J, Wain N, Wu X.Metall Mater Trans, 2010; 41A: 1033
[16] Xu L, Guo R P, Chen Z Y, Jia Q, Wang Q J.Chin J Mater Res, 2016; 30: 23
[16] (徐磊,郭瑞鹏, 陈志勇, 贾清, 王清江. 材料研究学报, 2016; 30: 23)
[17] Cao L F, Wu X D, Zhu S M, Mei J F, Wu X H, Bettles C.Mater Sci Eng, 2014; A598: 207
[18] Xu L, Guo R P, Bai C G, Lei J F, Yang R.J Mater Sci Technol, 2014; 30: 1289
[19] Li S Q, Chen Z Y, Wang Z H, Liu J R, Wang Q J, Yang R.Acta Metall Sin, 2013; 49: 464
[19] (李少强, 陈志勇, 王志宏, 刘建荣, 王清江, 杨锐. 金属学报, 2013; 49: 464)
[20] Bear D R, Merz M D.Metall Trans, 1980; 11A: 1973
[21] Guo Z, Malinov S, Sha W.Comp Mater Sci, 2005; 32: 1
[22] Arzt E, Ashby M F, Easterling K E.Metall Trans, 1983; 14A: 211
[23] Li S Q, Chen Z Y, Wang Z H, Liu J R, Wang Q J, Yang R.Chin J Mater Res, 2013; 27: 97
[23] (李少强, 陈志勇, 王志宏, 刘建荣, 王清江,杨锐. 材料研究学报, 2013; 27: 97)
[24] Wang H T, Fang Z Z, Sun P.Int J Powder Metall, 2010; 46: 45
[25] Yuri T, Ono Y, Ogata T.Sci Technol Adv Mater, 2003; 4: 291
[26] Dong P.Met Forming Technol, 2002; 20(3): 12
[26] (董平. 金属成形工艺, 2002; 20(3): 12)
[27] Guo R P, Xu L, Zong B Y, Yang R.Mater Des, 2016; 99: 341
[1] 徐磊, 田晓生, 吴杰, 卢正冠, 杨锐. 热等静压成形Inconel 718粉末合金的显微组织和力学性能[J]. 金属学报, 2023, 59(5): 693-702.
[2] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[3] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[4] 赵雷, 王辉, 杨丽霞, 陈学斌, 郎润秋, 贺林峰, 陈东风, 王海舟. Fe-Co-Ni系组合合金热等静压高通量制备方法初探[J]. 金属学报, 2021, 57(12): 1627-1636.
[5] 毕胜, 李泽琛, 孙海霞, 宋保永, 刘振宇, 肖伯律, 马宗义. 高能球磨结合粉末冶金法制备碳纳米管增强7055Al复合材料的微观组织和力学性能[J]. 金属学报, 2021, 57(1): 71-81.
[6] 和思亮, 赵云松, 鲁凡, 张剑, 李龙飞, 冯强. 热等静压对铸态及固溶态第二代镍基单晶高温合金显微缺陷及持久性能的影响[J]. 金属学报, 2020, 56(9): 1195-1205.
[7] 卢正冠,吴杰,徐磊,崔潇潇,杨锐. Ti2AlNb异形粉末环件的轧制成形与性能研究[J]. 金属学报, 2019, 55(6): 729-740.
[8] 覃嘉宇, 李小强, 金培鹏, 王金辉, 朱云鹏. 碳纳米管(CNTs)增强AZ91镁基复合材料组织与力学性能研究[J]. 金属学报, 2019, 55(12): 1537-1543.
[9] 马国楠, 王东, 刘振宇, 毕胜, 昝宇宁, 肖伯律, 马宗义. 热压烧结温度对SiC/Al-Zn-Mg-Cu复合材料微观结构与力学性能的影响[J]. 金属学报, 2019, 55(10): 1319-1328.
[10] 徐磊, 郭瑞鹏, 吴杰, 卢正冠, 杨锐. 钛合金粉末热等静压近净成形研究进展[J]. 金属学报, 2018, 54(11): 1537-1552.
[11] 潘宇, 路新, 刘程程, 孙健卓, 佟健博, 徐伟, 曲选辉. Sn对TiAl基合金烧结致密化与力学性能的影响[J]. 金属学报, 2018, 54(1): 93-99.
[12] 徐伟,路新,杜艳霞,孟庆宇,黎鸣,曲选辉. 粉末冶金制备Ti-Fe二元合金的耐腐蚀性能[J]. 金属学报, 2017, 53(1): 38-46.
[13] 吴杰,徐磊,卢正冠,崔玉友,杨锐. Ti-22Al-24Nb-0.5Mo粉末合金的制备及电子束焊接*[J]. 金属学报, 2016, 52(9): 1070-1078.
[14] 姚瑶,叶建水,董建新,姚志浩,张麦仓,国为民. DD407/FGH95合金热等静压扩散连接反应层元素互扩展规律: I.扩散连接模型的建[J]. 金属学报, 2013, 49(9): 1041-1050.
[15] 姚瑶,董建新,姚志浩,张麦仓, 国为民. DD407/FGH95合金热等静压扩散连接反应层元素互扩展规律:II. 模型验证及实验分析[J]. 金属学报, 2013, 49(9): 1051-1060.